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PART 1

AN EQUATION SATISFIED BY THE PROBABILIT{ES THAT A
PLANE WILL BE DOWNED BY i HITS

INTRODUCTION

Denote by Pi (i =1,2,..., ad inf.) the probability that a plane
will be downed by i hits. Denote by p; the conditional prob-

ability that a plane will be downed by the i-th hit knowing that
the first i -~ 1 hits did not down the plane. Let Qi =] - Pi and

q; = 1l - P; (i =1,2,..., ad inf,). It is clear that

Q; = 9q;9,--.9; (1)

and

o
|

= l - qqu..'qi . (2)

Suppose that P; and Pi (L =1,2,...) are unknown and our infor-
mation consists only of the following data concerning planes
participating in combat:

® The total number N of planes participating in combat.

® For any integer i (i = 0,1,2,...) the number Ai of
planes that received exactly i hits but have not been
downed, i.e., have returned from combat.

A,

Denote the ratio ﬁi by a; (i =0,1,2,...) and let L be the

proportion of planes lost. Then we have

2 a; =1- L. (3)
i=0

lphis part of "A Method of Estimating Plane Vulnerability
Based on Damage of Survivors" was published as SRG memo 85 and
AMP memo 76.1.
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The purpose of this memorandum is to draw inferences concerning
the unknown probabilities P; and P; on the basis of the known

quantities agr Ays Agsceey etc.

To simplify the discussion, we shall neglect sampling errors,
i.e., we shall assume that N is infinity. Furthermore, we shall
assume that

0 <py <1 (i =1,2,..., ad inf.). (4)

From equation 4 it follows that

Rl 7o NTTe

0 <P, <1 (i =1,2,..., ad inf.). (5)

R A, AL

Ve shall assume that there exists a non-negative integer n such

that a, > 0 but a; = 0O for i > n. .

We shall also assume that there exists a positive integer m such

that the probability is zero that the number of hits received by .
a plane is greater than or equal to m. Let m' be the smallest

integer with the property that the probability is zero that the

number of hits received by a plane is greater than or equal to

m'. Then the probability that the plane receives exactly m' - 1

hits is positive. We shall prove that m' =n + 1. Since a, > 0, f

" it is clear that m' must be greater than n. To show that m'
cannot be greater than n + 1, let y be the proportion of planes
that received exactly m' - 1 hits. Then y > 0 and
y(1 - poi_y) = api.1+ Since y > 0 and 1 - pj._y > 0, we have

a

m'=1 > O+ Since a; = 0 for i > n, we see that m’ - 1 < n,

i.e., m'< n + 1. Hence, m' = n + 1 must hold. !

T N g et

Denote by x; (i = 1,2,...) the ratio of the number of planes

downed by the i-th hit to the total number of planes
participating in combat. Since m' = n + 1, we obviously have
X = O for i » n. It is clear that

X, =L=1-a - a; = ... - a . (6)




CALCULATION OF xi IN TERMS OF ao, al,...,an, pl,...,pn

Since the proportion of planes that received at least one hit is
equal to 1 - ajr we have

xl = pl(l - aO) . (7)

- A S NI R, fo-f 1 A0 7 T
B actiat it i i

‘the proportion of planes that received at least two hits and the
first hit did not down the plane is obviously equal to
1l - a, - a; - x,. Hence,

X, = p2(l -a, -a; - xl). (8)

In general, we¢ obtain

% = pi(l -a - al - eee = ai-l =X T X, = oeee - xi-l)
(i = 2,3,00e,0n) (9)

Putting

€ o

[}
[

i
[}

[
o)

—

|
.
.

t
o]

i-1 " {10)
F; equation 9 can be written

x; + pi(xl + c.. + xi-l) = Pp;c; (1 =2,3,...,n). (11)

Substituting i - 1 for i, we obtain from equation 11

Ximp PP Foeee F x5 0) =P C50 (12)
(1 = 3,4’0..,").
Dividing by Py_yr we obtain
Xi-1 . .
+ (xl + see + xi_2) = ci-l (1 = 3,4,0..,"). (lJ)

Pio1




1 9541
Pi1 Pi-1

Adding X 1 -

i-1 to both sides of
equation 13, we obtain

9i-1
Pil1

(i = 3,4,...,n+l).

From equations 11 and 14, we obtain

X, + c I X = p,c
i TP %4 ) i-1 PiCj -

pl—l
Hence,
P;4.
i171-1 :
¥p T Riley mejy) r g Xy (= 3rdeeen)
Let
di =Pyl = €51 = P20 (i = 3,4,...,n)
and
P;q;_
t. = 131i-1 (i=3,4’o-~’n)'
1 Pi-1

Then equation 16 can be written as

(i 3,4,...,“)-

P9

(14)

(15)

(16)

(17)

(18)

(19)

Denote pl(l - ao) by dl’ =Py, by dz, and ——— by tz; then we

Py
have

X, = d1 and x2 = tle + d2 o

(20)




From equations 19 and 20, we obtain

x1 = d1
i~1 .
X = j}___“_l djtj+ltj+2 cen b, 44 (i = 2,3,.0.,n). (21)

EQUATION SATISFIED BY Qyreeesq,

To derive an eguation satisfied by dyjreessQqe We shall express
n

Xx. in terms of the quantities t., and 4., (1 = 1l,...,Nn).

& i i i

Substituting i for i - 1 in equation 14, we obtain

(22)
i q. qg; |i-1
i i
X, = 2: X, = C;, === X, =C, == f 3 (d.t. i...t.) +d. .
1 j=1 J 1 P; 1 1 Pj j=1 j 3+1 i 1
Hence, in particular
n q, | n=l1 (23)
X = X. = ¢C - —— d.t. ess t + d =L .
n jz=:l j n Pn j=1 ( j i+l n) n
. L. Py
Since Sy - L= a.r and since tj+l cee tn = 5; qj eee Q)0 We
obtain from equation 23
n=1 d.
- =
a - Y. eee g + g_.a =0, (24)
n . . n n n-1
j=1 Py 1]

je we obtain

Dividing by qy -+ 9, and substituting -pjaj_1 for 4




a, . a . ) n-1 dJ
ql s s e qn ql ) qn-l J=1 qul e e q]"’l
] - 2n + 3n-1
1 qy -+ 9 q; -+ 9,
“ (25)
. n-1 a.j:]. _ (_i_l_
', j=2 91 *** Y4 Py
3
= —d— - (1 -a,) =0
=1 qy .- qj o
or
n a.
—_—31 -1 -a . (26) ’
=1 Ay oo qj o
If it is known a priori that Q = eee = Ay then our problem

is completely solved. The common value of q,,...,q, is the

root (between 0 and 1) of the equation

n

L2

,=1—ao
(o]

Q
-

It is easy to see that there exists exactly one root between zero
and one. We can certainly assume that q; > q5 > ... > q,. We

shall investigate the implications of these inequalities and
equation 26 later.
ALTERNATIVE DERIVATION OF EQUATION 26

Let b; be the hypothetical proportion of planes that would have

been hit exactly i times if dummy bullets would have been used.

Clearly b; > a;. Denote b; - a; by y; (i = 0,1,2,.¢.n). Of

n
course, by = a,, i.e., y, = 0. We have Z%)bi = 1. Clearly
J=

-6~
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yi = Plbi = Pl(ai + yl) (1 = l,2,...,n). (27)
Hence,
P. l - qg eee . a.
i 1 i i
Yy = = a. = a. = ————————— - @, o (28)
i 0, i qp e 44 i dy eee 95 i

n
Since )} y; = L, we obtain from equation 28

i=1
n ai i
_ =L + a. =1-a_. (29)
i=1 91 e 94 i=1 °

This equation is the same as equation 26. This is a simpler
‘derivation than the derivation oi equation 26 given betfore.
However, equations 21 and 22 (on which the derivation of eguation
26 was based) will be necded later for other purposes.

As mientioned before, equation 29 lcads to a solution of our
problem it it is known that ) = eee = 4qp. In the next

memorandum (part II) we shall investigate the implications ot
equation 2Y under the condition that q 295 2 e 2 4

NWUMERICAL LXAMPLES

N is the number of planes participating in combat. Ao' Al, Az,
...,An arc the number returning with no hits, one nit, two hits,
«esyn hits, respectively. Then

d. =-—-l (i = 0,1,_2'0-.'")

i.e., ai is the proportion of planes returning with 1 hits. The

computations below were perftformed under the following two
assumptions:




o The bombing mission is representative so that there is no
sampling error.

e The probability that a plane will be shot down does not
depend on the number of previous non-destructive hits.

Examgle l: Let N = 400

and A = 320 then a_ = .80
o) o
Al = 32 al = ,08
A2 = 20 a, = .05
A3 = 4 a = .01
A4 = a, = . 005
AS = 2 a5 = ,005

We assume ql = q2 = aee = q5 = q., where qi is the probability of

i
a plane surviving the i-th hit, knowing that the first i - 1 hits
did not down the plane.

Then equation 26,

n a.

[}
[
I
o

-

j=l ql > 00 qj
reduces to

& 3

Z J = l"ao O

j=1gq

Substituting values of ai

.08 .05 .01 . 005 + .005 _
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The Birge-vieta method of finding roots described in Marchant
Method No. 225 is used to solve this equation (table 1l). We find
qQ=9q9; = . 851, p; = 149 where P; is the probability of a plane

being downed by the i-th hit, knowing that the first i - 1 hits
did not down the plane.
X equals the ratio of the number of planes downed by the i-th

hit to the total number of planes participating in combat. Using
eyuation 9

X; = Pi(l - ao S 4] T oees - oAy - X, = X. = ses = X.

(1L = 2,37.0..4n)

? . for n = 5, we obtain
;% X, = pl(l - ao) = .,030
¥ . x2=[,,2(l—do—'l—xl)=.0l3
3 x3 =pyll —a, -a; -a, -x; -x,) =.004
B Xg = p4(l -a,-a -a, - a; - x; - X, - x3) = ,U02
x5 = ps(l - ao -a, - az - d3 - a4 - xl - X,- x3 - x4) = ,001
{ Lxample 2: Let a, = .3, a, = 2, a, = .1, a,; = I a, = .05, and
i ag = .05. Then the following results are obtained: ¢ = .47,
1 b=1-9q= .13, % = .09, x, = .05, Xy = .03, x, = .02, and
xs = L,01.

The value of q in the second example is nearly equal to the value
in the first example in spite ot the tact that the valucs a;

(L =0,1,...,5) differ considerably. The difference in the
values a; in these two examples is mainly due to the fact that

i th¢ probability that a plane will reccive a hit is much smaller
33 in the first example than in the secona example. The probability
1 that a plane will receive a hit has, of course, no relation to
the probability that a plane will be downed if it receives a

hit,

R,
L}
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Assume q = 1 = Y,

200

200

200

-.080
4.200

+.120
+.200

+.320

Y Y "X

TALRLE 1

-.050 ~. 010
+.120 +.070
+.070 +.060
+.320 +.390
+.390 +.450

A

-2+ 1 - ,0990 =

Assume q = .9010 = Y,

«2000

<2000

2000

-.0800
+.1802

+.1002
+.1802

+.2804

-.0500 -.0100
+.0903 +.0363
+.0403 +.0263
+.2526 +.2639
+.2929 +.2902
[]

o

-. 005
+.060

+.05%
+.450

4,505 = A

«9010

-.0050
+.0237

+.0187
+.2615

+.20802 = B

- - -2 .9 - .04211 .858887
Yy =¥, - 5 LT 042113 = 8

Assume g = .858887

«200000

+200000

«200000

~.080000
+. 171777

+.091777
+.171777

+.263554

Assume q = .851255

+2000000

«2000000

«2000000

4.080000
4.170251

+.090251
+.170251

4.260502

Yo " ¥,

1

Y3

-.050000 -~,010000
+.078826 +,024758

+.028826 +,014758
+.226363 +,219179

+.255189 +.233937

1

-10-

~.005000
+.012675

+,007675
+.200925%

+.208600

Yo = v, - g2 = .858887 - .007632 = .851255

=Y,
-.050000 -,010000 -.005000
4.076827 +,022837 +.010929
+.026627 +.012837 +.005928
4.22175%4  +,211606 +.191058
44248531  +.,22444) +,196986

DO

5 = ,851255 - ,000234 = .B851021
1

~. 005
+.055

+.050 = A
°

«.0050
+.,0168

+.0118 = B
o

1

-.005000
+.006592

+.001592 = ¢
(-]

c

-.005000
+.005046

+.000046 = D
o

1

e

BRER S L e B
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PART II1

MAXIMUM VALUE OF THE PROBABILITY THAT A PLANE WILL BE DOWNED
BY A GIVEN NUMBER OF HITS!

The symbols defined and the results obtained in part I will be
used here without further explanation. The purpose of this

i
memorandum is to derive the least upper bound of xi=z:

j=1

x. and

]

that of Pi (i =1,...,n) under the restriction that
9, pd 4y 2 tecer 2 dp .

First, we shall show that Xy is a strictly increasing function
of pj for j < i . Let us replace pj by pj + A (A > 0) and let
us study the etfect of this change on XyreoesX o benote the
changes in XyreoorX, by Al,...,Ai, respectively. Clearly,
By = veo = Aj—l = 0. It follows easily from equation 9 that

. > 0 and
AJ

8341 T TPy41 By -
Hence,

Aj + Aj+l = (l - pj+l) Aj > 0'
Similarly, wec obtain from equation 9

Bysz = “Pya2(8y + 8541) = “Pygp(l = Pyyy) 4y -

Hence,
Aj + Aj+l + Bjez = (1 - pj+2) (1 - pj+l) Ay > 0.
In general
Aj + Aj+1 + .00 + Aj+k = (1 - pj+l) eee (1 - pj+k) Aj> 0

(k = 1,...'i“j)

tience, we have proved that xi is a strictly increasing function

of Py (3 = l,...,i).

lthis part of "A Method of Estimating Plane Vulnecrability
Based on Damage of Survivors" was published as SRG memo ¥7 and
AMP memo 76.2.
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On the basis of the inequalities piz pi we shall derive the . !

-1’
least upper bound of xi. For the purpose of this derivation we

shall admit 0 and 1 as possible values of B (i = 1,e¢.,n), thus
making the domain of all possible points (pl,...,pn) to be a

closed and bounded subset of the n-dimensional Cartcsian space.
Since xi is a continuous function of the probabilities Pye Pye

etc. (X is a polynomial in pl,...,pi), the maximum of xi exists

g and coincides, of course, with the least upper bound. Hence,
our problem is to determine the maximum of xi'

M
{.
¢

First, we show that the value of Xi is below the maximum 1if
p. > pi. Assume that Py > Py and let k be the smallest positive

3
n »
integer for which P> by Obviously k > i. Let p5 = pJ(l + €) i
for 3 = 1,...,k-1, and p5 =pj (1= n) for j = k,ktl,eeu,n, %
where € > 0 and n is a function n(e) of € determined so that - s
3 n 4
g 2: x5 = L (x5 is the proportion of planes that would have been %
J=1 ‘
brought down with the j-th hit if pi,...,p& were the true .
probabilities), Since xr (r = 1,...,n) is a strictly monotonic

tunction ot pl,...,pr, it is clear that ftor sufficiently swmall

Ry

3 such & function n( e ) exists. It is also clear that for suflfi-
ciently small € the condition p'li pL £ eee £ p; is tultilled.
Since pi >p. (3 =1,00.,1), we see that Xi > xi (xi does not

]
depend on p; for r > i). Hence, we have proved that if

e e XTI e

Ppreceeby is a point at which Xy becomes a maximum, we must have

= P e

pi =})1+l= e e n

{low we shall show that if Xy is a maximum then by = b, = eee = Py
For this purpose assume that pi > pl and we shall derive a con-
tradiction. Let 3j be the greatest integer for which pj= Pye
Since pi> byr we must have jJ < i. Let p; = pr(l + €) for
r=1,...,) and p; = pr(l - Nn) for r = j+1,...,1i, where

i i 5
€ > 0 and n is determined so that égi xg = éé&xk. Then tor the
probabilities pi,...,pi, Pig17ec°rPp the proportion ot lost

g -12-




planes is not changed, i.e., it is equal to L. Now let p; = p{

for r > i. Then the proportion L' of lost planes corresponding
to pi,...,pa is less than L. Hence, there exists a positive

- A so that the proportion L" of lost planes corresponding to the
probabilities p; = p; (1 + A) is equal to L. But, since p; > p;
i i i
(r = 1,...,i) we must have 3° x% > Y} x! = ) x.. Hence, we
j=1 j=1 j=1

3

arrived at a contradiction and our statement that P} =Py = eeo =
P; is proved. Thus, we see that the maximum of xi is reached

when P} =Py = ¢ev = Ppe

TR T e T (Y

LEAST UPPER BOUND OF Pi

F Ky g O

Now we shall calculate the least upper bound of Pi' Admitting
. the values 0 and 1 for pj, the maximum of Py exists and is equal
to the least upper bound ol Pi' Since Pi =1 - q) eee 950
maximizing Py is the same as minimizing g} s+ 94+ Ve know that
4yreeesq, are subject to the restriction

n a.
—J_al—ao . (30)
jgl ql LI qj

VT B SPTIEVIGE SRR i~ YTwe:. - ¢ WIS A ¢

e TP s ATV 1 3 o,

] Let q?,...,qﬁ be a set of values of Qyrecerdy (satisfying

! equation 30) for which q) e qj becomes a minimum. First, we

e

o
9541
Consider the set of probabilities q; = qg for r < 1 and q; = q?

show that q? = R q: . Suppose that qﬁ < q? .

for r > i. Then

n a.

< 1 - a .
- J=l ql see qj (o]

-13-
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Hence, there exists a positive factor A < 1 so that

n a.

]
[
1
1]
-

j=1 ql seo e qj

where q; = xqi (i =1l,see,n). Then

n " (] o_0O (o]
qlqz e ql < qlq2 veoe qi

in contradiction to our assumption that q? cee q? is a minimum.

Hence, we have proved that q? = eer = Q.

Now we show that there exists at most one value j such that

1>q%> q? . Suppose there are two integers j and k such that

qy > q? . Let j' be the smallest integer for which

and let k' be the largest integer for which qﬁ, = qﬁ .

Let G5, = (1 + © a3, Gu= 74 G (€ > 0), and . = qf

for r # j', # k'. Then

q 3 =q° ® and . <1l-a
ql LI qi~ql o e 0 qi Z - o .

r=1 ql LI ) qr

Hence, there exists a positive factor A < 1 such that

ar . gt
r=1 91 *** 9 N

where qf = Xﬁr . But q} ... q} < El cee Ei = q? ces q?, which

contradicts the assumption that qg e q? is a minimum. This

proves our statement.,
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It follows from our results that the minimum of q, is the root of

the equation

— =] -a . (32)
= o

Now we shall calculate the minimum of 9,9, First, we know that
q; =9, (i > 2) if 1,49, be a minimum. Hence, we have to minimize

qlq2 under the restriction

1 2 n < _
G, 92 2

a a a

a, -2 [a; + 2 —% oo+ —="11]= 0 (34)
q9) q, q, q,

(Lagrange multiplier = 1)

] a 2a (n - 1l)a

q ~A 2 L3, coee ¥+ —— =0, (35)
l q 2 3 n
1N 9 9

Because of equation 33, we can write equation 34 as follows:
9192

A - = 03 A= ——=t
q2 - ql (1 ao) 0; A 1 - ao

Substituting for A in equation 35, we obtain

1 a, 2a3 3a4 (n - l)an
hoT-a,\g "2 T3t )"0
o\e, 9 9 a, (36)

=-15=
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or
a 2a (n - 1l)a
1 2 3 n
ql =l—-_-T —_ + -5 + .00 t Py . (37)
° \% 92 92
On the other hand, from equation 33 we obtain
a a a
q, = —t— fa, + 2 + -3 + co. + n . (38)
1 l] - a 1 2 n-1
© 92 92 92

Equating the right-hand sides of equations 37 and 38, we obtain

a 2a 3a ({n - 2)a :

3 4 5 n

5 + 3 + ) + cee + =1 -3 = 0. (39)
93 93 93 9;

It is clear that equation 39 has exactly one positive root. The
root is less than or equal to 1 if and only if

a, + 2a, + 3a

Equations 38 and 39 have exactly one positive root in q, and q,.
We shall show that if the roots satisfy the inequalities 1 > q; > qAye
then for these roots qlq2 becomes a minimum. We can assume

that 2 < n, since the derivation of the minimum value of Yy e Yy
will be given later in this memorandum. It is clear that for any

a
1 , . .

value 9, > T—:—;; equation 38 has exactly one positive root in
q,. Denote this root by ¢(ql). Hence, 0(ql) is defined for

a
all values q, > T—:ls— . It is easy to see that
o

-16-
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lim ¢(ql) = +o

.1 ..
U- TSy r

Hence (assuming al > 0)

lim ¥(q;) =+ 1

a
1
9+ 1

L]

where W¥(q;) = q, O(q'l).

It is clear that lim ¢(ql) = 0. Since an > 0, it follows from
ql+oo

equation 38 that q ¢(ql)]n-l has a positive lower bound when

Yy oo But then, since n > 2, lim q; ¢(ql) = + ». From
q1->oo

the relations lim w(ql) = lim W(ql) = +® it follows

a
1
LT 91>

that the absolute minimum value of W(ql) is reached for some
positive value q, - Since equations 38 and 39 have exactly one
positive root in q1 and q2, the absolute minimum value of w(ql)

must be reached for this root. This proves our statement that
if the roots of equations 38 and 39 satisfy the inequalities
1> q, 2 q, then for these roots 9,9, becomes a minimum con-

sistent with our restrictions on 9 and q,- If 1 > 9, 2 4q, is
not satisfied by the roots of equations 38 and 39, then q, is

equal either to 1 or to 9, and the minimum value of 9,9, is

cither ¢(1l) or q2 , where q is the root of the equation




Lol 3 £ P e

n a

r
— = l - a L]
éZi qr °

tlow we shall determine the minimum of ql vee 4y (2 <1< n).

First, we determine the minimum Mil of q1 ees 9y under the re-

striction that q2 =9q;. Thus, we have to minimize qlq;-l under
the restriction that
a a a “
S S 32 +...+—%_—_—1-—=1-a0. (40a)
9 9% 99 949,
Using the Lagrange multiplier method, we obtain
. ' a a .
i-1 A 1 n i-1 A
q - = - 4+ e + — = . - 2= (1l -a_)~=
2 q q n-1 2 q 0
L™ )9, 1 (41)
and
. a 2a (n - 1)a
(i-l)qqu,_z—-é‘—(—%— F— b+ ——0) o0,
1\%2 % 42 (4la)
i-1
o 9,9,
Substituting T for ) (the value of )\ obtained from
o

equation 41), we obtain

a. 2a (n - 1l)a
“'“ql'i‘f—a‘ —2"—2—3*---*—1:1——" =V
° \92 9 92 | (42)
From equation 40a
a a
(1 - gy ~F=E [a, + 2+ 7 = 0. (43)
) q, g,
-18~-




From equations 42 and 43, we obtain %
|
!

: (i - 2)a (i - 3)a (i - n)a
& (i - 1l)a, + 2 . 34 i+ ———0 =,
! & 1 q 2 n-1

.- 2 92 92 (44)

From Descartes' sign rule it follows that equation 44 has exactly
one positive root.

Let q, = qi and q, = qg be the roots of the equations 43 and

o o 0, 0,i-1 o o
44. If 1 > q; > 9, then Mil ql(qz) .. If 1> q, > q, does
not hold, then M, is either (q*)? or (q“)l-l, where q' is the

root of the equation
a.
_—J—J = l - aO (45)
. Jj=1 (q')
and q" is the root of the equation

a a a

2 3 n _ )
al+—” + 3 + cee +-_..n_-1 = l-ao . (46)
q (g") (a")

Let Mir (r = 2,¢0.,1-1) be the minimum of qy +-- 9§ under the

restriction that q; = .- =49 = 1 and g Then Mir can

r-1 r+1 - 95
be calculated in the same way as M{7 we have merely to make the

substitutions
*
n = n-r +1
*
ao = ao+al+... +ar-l
* . *
aJ - aJ+r-l (J - lpo.o'n )
* . *
qj qj+r-1 (3 = 1yeee,n )
*

i =i"r+l’

- * *
and we have to calculate the minimum of 9y see Qix o Thus, we

have to solve the equations corresponding to equations 43 and 44,
. i.e., the equations
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* * * * N l
¥ * i-1 * a2 a3 qnx
(1 - l)q1 - —— a) +—= +———5 + .t —3 | = 0 :
l - a q* * *) *
(43%) F
and |
'* * .* * '* * *
* * (1 - 2)a2 (i - 3)a3 (i -n )an*
(i -1)a, + —————— + —m—= + .., + = 0. 3
1 * x 2 * n*_1 ;
9, (a,) (4g,) (44%) :
3
* * ] :
Let 4 = Vv, and q, = v, be the positive roots ot the equations !
* K
* * : = i-1 ‘
43* and 44*. If 1 > Vi 2 Vor then Mir vlv2 . If 1 > vy > L é
%* t]
does not hold, then Mir is equal to either (v')1 or
* “ .
(v?)* "1, Ghere v' is the positive root of the equation ;
* *
n a. *
> —d= =1-a (45*) .
=1 (v?
and v" is the positive root of the equation [
* * *
* a, a ax *
a, +—+ 5+ e b ——3=7 =1l-a . (46*)
v" (v") (v®)

The minimum Mi of d; -+ 95 (i=2,3,...,n-1) is equal to the
smallest of the i - 1 values Mil""’Mi

'1-1

llow we shall determine the minimum of qy eee 9 - We show that
the minimum is reached when q) = +ee =9

n-1 = l. Suppose that

this is not true and we shall derive a contradiction. Let j be
the smallest integer for which qj <1 (jJ <n). Let qj = (1 + e)qj

- 9 -
(e > 0), q, = T_?E—E , and 9, = 9, for all r # j, # n.

Then ql... qn ese = ql... qn and

-20-~




a
—— <1-a, .
r=1 q; -+ qQ,

Ms>

Hence, there exists a positive )\ < 1 such that

n a
r
?—T-l-ao'
r=1 ql cee qr

where
*

9

=er.

* * -— -—
But then q) -+ q, < 9y +e- 9, = q; -+ 9, in contradiction to
the assumption that q; +++ 9, is a minimum. Hence, we must have
Q) = eee =q_; = l, Then, from equation 26 it follows that the
minimum value of q; ... qj is given by

If i > 1 but < n, the computation of the minimum value of q) «+» 94

is involved, since a large number of algebraic equations have to
be solved. 1In the next part we shall discuss some approximation
methods by means of which the amount of computational work can be
considerably reduced.

~-21-

A S ORI PRI T M e T NI S N S MR e L

P
\




PART III

APPROXIMATE DETERMINATION OF THE MAXIMUM VALUE OF THE PROBABILI1TY
THAT A PLANE WILL BE DOWNED BY A GIVEN NUMBER OF HITS1

The symbols defined in parts I and II will be used here without
further explanations. We have seen in part II that the exact
determination of the maximum value of Pi (i < n) involves a con-

siderable amount of computational work, since a large number of
algebraic equations have to be solved. The purpose of this
memorandum is to derive some approximations to the maximum of Pi

which can be computed much more easily than the exact values,

Let us denote the maximum of Pi by P? and let Q? =1 - P? .

Thus, Q? is the minimum value of Qi' Before we derive approxi-
mate values of P? (or Q?) we shall discuss some simplifications
that can be made in calculating the exact value P? (or Q?)

assuming 1 < i < n, We have seen in part II that Q? is cqual to

the smallest of the i - 1 values M.,,...,M. . .. We shall
il i,i-1

make some simplifications in calculating Mir (r = 1,00.,1-1).,

For this purpose consider the equation

2 %r+l %n
_+ + cee + _r=l-ao-al---o_a_l- (47)
u uv uvn
s
It is clear that for any value u > v——— o ¢+ Cyuation
o LR r-l

47 has exactly one positive root in v. Denote this root by ¢r(u)
a
r L]

1 -a,~ «co = a

In all that follows we shall assume that a; >0 (1 = 1,ee0,n).

Thus, Or(u) is defined for all values u >

We shall prove that

lim i-r =+
.o a CJ[}r(u)] ) = + (48)
R I

lThis part of "A Method of Estimating Plane Vulnerability
Based on Damage of Survivors" was published as SRG memo 88 and
AMP memo 76.3.
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Uu-+>o

lim u[@r(u)]i" = 4+ (49)

u
r

l-ao-ono -ar_l

then ¢r(u) + +», Since i > r, we see that equation 48 must

It follows easily from equation 47 that if u-~

hold. It follows easily from equation 47 that lim ¢r(u) = 0.
u=+o

we also see from equation 47 that if u+w, the product ul¢ Y
r

must have a positive lower bound. Equation 49 follows from this

and the fact that lim ¢r(u) = 0.
Q-+

We have seen in part II that equations 43* and 44* have exactly
* ®
one positive root in the unknowns, 4, and q,. Let the root in

qI be u?r. Then the root in q; is equal to Qr(ugt).
From equations 48 and 49 it follows that u [¢r(uﬂ i-r ;s

. . . . al’.‘ le)
strictly decreasing in the interval T -2 - .. - < u < uips

o r=1

and is strictly increasing in the interval u?r <u < +m

Denote by u; the positive root of the eguation

% “r+l n
-:— + —:3— + so0 + :ﬁ:?:I =] - ao - eee = ar_lo (50)

r
equal to the smallest of the three values

ul [Or(u;)]i-r, [Or(l)]l-r, and u?r [Or(u?r)]i-r.

A simplification in the calculation of Mir can be achieved by

5 ] [ ] - [ ] m 3
It is clear that ug < 1 and ¢r(ur) = u'! . The value Mir is

the fact that in some areas Mir can be determined without

calculating the value ugr « We consider three cases.

case A: ul [¢r(u;)]i-r < [Or(l)]i-r .

23




In this case,

M, = u [¢r(uz'.)]i-r i£ 2 u[epr(u)]i" >0 for u = u}
and )
My, = u?r [¢r(u?r)]1_r if E% u[@r(uﬂl-r < 0 for u = u!.
b Case B: u’ [tﬁr(u;:)]i"r > [¢r(l)] i=r

In this case,

-

M, [¢r(1)]i"" it 2 u[tbr(u)]i_r <0 foru-=1

and
= 120 [ o i-r d j—r _
Mir = uir ¢r(uir)] if - u[¢r(uﬂ > 0 for u = 1. i
Case C: u! ’¢(u£_)]i~t - [O(l)] i-r

In this case,

_ .0 o i-r
Mir = Yir [Nuir)] *

i=-r

We can easily calculate the value of ‘gﬁ u[érUJﬂ for u = u;

and u = 1. In fact, we have

. . g d®_(u)
Em [¢,<u)]‘ ‘- [%‘“’]1 T4 (i-x [%m]l el

9 (51)
dé_(u) .
and ——éﬁ—- = g% can be obtained from equation 47 as follows.
-24-~




‘ 4 %4l n
Denote — + + eee ¥ —p— Dby G(u,v). Then
u uv uv
dé_(u) 2 G(u,v)
r dv _ _ 3u !
du T du - 9
WV G(u,v)
(52)
a a a
-1 (_E PN 5.2 SO — )
Y \u uv av™F
- a 2a_ .. (n - r)a
T (S e T
v v v
aryl | 2342 (n - rja, r
- 7 Y3 Y oeer Y Thorer
v v v ,

on the vasis of equations 51 and 52, we can easily obtain the
value of Ly ¢_(u) 1-F ¢or u = u' and u = 1 if u' and ¢_(1)
du r r r r

have been calculated. If u = ul , then ¢ (u) =v = ul; if
u =1, then v = Or(l).

Since ¢r(1) is equal to the root of the equation in v

qr+l %n
ar+_v-—+ooo+‘;H‘:r'=l-a°-al‘.'.-ar_l'

it follows from equation 50 that

' 0.(1) =ul, . (53)
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Thus, for carrying out the investigations of cases A, B, and C

forr = 1,...,i-1, we merely have to calculate ui,...,u;.

If we want to calculate Q? for all values i < n, then it scemns

best to compute first the n quantities ui,...,ua.

r
the smallest of the three values

o ' = [ ] - ] 3
Since u! = ¢r(ur) and ¢r(l) = up.)r We can say that M, is

i-r+l i-r o) o i-r
(u;) ' (u;+l> ., and us, [¢r(uir)] .

Since Q? is equal to the minimum of the i - 1 values,

Mil""’“i,i-l' we see that
Q© < t., (54)
- i
vhere

If n is large, it can be expected that Q? will be nearly cqual to

ti. Thus, ti can be used as an approximation to Q? . In order
to see how good this approximation is, we shall derive a lower
bound z; for Q? . If the difference ti -z is small, we arc

certain to have a satisfactory approximation to Q? . If SR

is large, then t; still may be a good approximation to Qg, since

it may be that z; is considerably below Q? .

To obtain a lower bound z, of Q?, denote by yj () = 0,1,...,1-1)

the proportion of planes (number of planes divided by the total
number of planes participating in combat) that would be downed
out of the returning planes with j hits if they werc subject to
i = j additional hits. Then

P- -yo+yl+... +Yi_1+x1+x2+oo. + X, . (56)

1 1

-26-
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It is clear that ajPi> yj (j = 0,1,...,i-1) and consequently

(ao + a, + c00 + ai-l) Pi > Yo + Y, + so0 + Yia) ° I

Hence,

e
oy —ep——-

yO + yl + oo + yi-l

< P, . (57)
aj +a; + ... +a; , i g
£
Equation 56 can be written £
‘
Y + Y, + e + Y. "
o 1 i-=1 4
P- = (a + LN ) +a--) 3-
i o i-1 ajg + ... ta; 5
(58) %
X *oees + x4 H
+ (1 - a = eee = a-- ) — - — . ?
) o i-17 1 - a, ces a;.1 E
yo+ coe +yi_1 &
Hence, P, is a weighted average of and i
i a_ + ... + a,
o i-1 :
]
X. + eee + X, :
1 = = . Then, from equation 57 it follows that J
- a - see¢ = @ {
o . i-1 &
§
x + L I ] + x- t
1 i ;
Py < T-a -3 == . (59) :
i l-a a, ces a ;-1 f

Since yj > 0, we obtain from equations 56 and 59

x +...+x-

1 i
X + eee + X, < P, < — — - (60)
1 i i T=a, - .- -a;_;
q .
? Hence,
!
x1+...+x1
* l-l-a-...—a <Qi<1-(xl+oo.+xi). (61)




In part II we have calculated the maximum value of xl + o0 + xi.

Denote this maximum value by Ai. Then a lower bound of Qi is
given by

< Q. (62)

=0

NUMERICAL EXAMPLE

The same notation will be used as in the numerical examples for
part I. 9 is the probability of a plane surviving the i-~th hit,

knowing that the first i - 1 hits did not down the plane. Then
the probability that a plane will survive i hits is given by

Q; =995 -+ 95 -
In part I it was assumed that
ql=q2="' =qi=qo (say)l

which is equivalent to the assumption that the probability that a
plane will be shot down does not depend on the number of previous

non-destructive hits. Under this assumption

The example below is based on the assumption that
9; 293 2 ++¢ 29

i.e., the probability of surviving the i + 1 hit is less than or
equal to the probability of surviving the i-th hit. In this
case, it is not possible to find an explicit formula for Qi' but

a lower bound can be obtained. That is, a value of Qi can be
found such that the actual value of Qi must lie above it. The

greatest lower bound is denoted by Q? « Hence, we have
O
Qi < Qi .

If

P, =1-0Q.,

-28-
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. Pg is the least upper bound of Pi; that is, the probability of

being downed by i bullets cannot be greater than Pg.

Since the computation of the exact value of Q? is relatively
complex, an approximate formula has been developed. This

approximation is called ti and ti pd dg. Another approximation
(o]
1.

e T 3

(zi) is available such that z; < However, z; is not as
accurate as ti' Whenever the full computation is to be omitted,
it is recommended that ti be used.

The observed data of example 1, part I, will be used. Thus,

G2 3oy, TS, AT R T

ao = .80' al = 008' az = .05’ a3 = .Ol, a4 = 0005’ a5 = ,005

The calculations are in three sections:

® The calculation of ti 2 Q?.
® The calculation of z; < Q?.

® The exact value of Q.

1. Calculation of ti (tiz Q.)

(1) Calculate ué, the positive root of equation 50:

ar ar+1 an

: —_+ + o0 + ———— =1 - a - eee = A . ;
j u u2 un-r+1 o r-1 f
For r = 1, we obtain f
a a a a a |
1 2 3 4 5 :
—_ ¢ + + 4 —==1-2a_, ‘

u :7 :3 :I u5 °

-29-
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which reduces to

5 4

20u” - ,08u” -~ .05u3

t =
u; = . 851 .

For r = 2,

92 33 3 &g
-——+—-2-+-—3-+—4=1
u u u u

which reduces to

: J12u% - Losud - Lo1u?
3 ' =
u2 « 722 .

For r = 3,

a
—_— ¢
u2 u

o]

F-
wlo
n
—
|
s}

a
3.,
u

which reduces to

.07u3 - .01u? - .005u

3 ' -
4 u3 .531 .

For r = 4,

ag

a

4 =
—_+ =]1-a_ - a,
u

n
(o)

u

which reduces to

.06u2 - ,005u - .005
' =
u4 «333 .

.01u® - .005u - .005

(2) tl,...,ts are given by equation 54:

0
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. 1 l- ‘
ti = Min [(ui) ’ (ui)l lpoo-l (u]!.-l)zl (ui)] ® !

We have
uj = .851, u) = .722, u} = .531, uj = .333 . .
|
Hence, ;
; t, = Min Bui)] = uj
= ,851
t, = Min [(u)?2, (u3)] ¢
2 17 v M2 ;
. = min [.724, .722] %
= .722
3
. 3 2
. ty = Min [(u])7, (u})", (u})]

min [.616, .521, .531]
.521

. 4 3 2
t, =Min [tup ", (7, (DT, (u))]
= Min [.524, .376, .282, .333]-
= .282
ts is not calculated since the exact value of Qg can be
easily obtained.
. 0O
2. Calculation of z, (zi < Qi)

The following values must be obtained:

q _, the root of equation 26A

(o]

Vo]

This has already been obtained as ui .« Thus 9 = .851. The

values of XyreeerXg have been calculated in part 1I:

e 7 st

-3]l=
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x = .,030, x_, = .,013, x, = .004, x, = ,002, x_ = .001l.

1 2 3 4 5
Al = xl + x2 + ® 08 + xl.
Al = xl = ,030
A2 = xl + x2 = ,043
A3 = xl + x2 + x3 = ,047
A4 = x; + X, + Xg + X4 = .049
A5 = xl + x2 + x3 + x4 + x5 = ,050.

From equation 62 the lower bounds z; are calculated:

i
zZ =l- - - <Q .
1 l-ao o e e al_l 1
Then
A
_ 1 _ .030 _
2y s l-y-5 =1-"73 = -8%0
o
A
2 .043
z, =1 - = )] = —— = ,642
A
3 .047
zZ, =1 - =] - = ,329
3 1l - a, - a; - a, .07
A
4 . 049
z, =1 - =] = —= = ,183
4 1l - ao - al - a2 a3 .06

zg is not calculated since Qg can be obtained directly.

3. The Exact Value of Q?

We have calculated ti and z; such that

O RGP
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|

2, <QF <ty (i = 1,2,...,5) .

The exact value of Q? is obtained as follows:

. g i-r+l ¢ ~,i-r o o i-r
Mijp= Min {(ur) r (Upyy) * Yir [¢r(uir)] }'

o o . ,
where ui - and ¢r(uir) will be defined below.

O _ v
Qi - Mln [Mil'...'Mi’i-l

]

or combining these equations with the definition of ti we obtain

Q) = Min {t} = .851

Q) = Min {t,, ud [¢)(u5))1}

Q3 = Min {egu o3 L e (317 ;10,0030

Qi = Min {t4, u:1[ ¢1(u31)]3r Uzzl ¢2(“:2)]2' “33[ ¢3(u33)”

o o o o
If u; - > 1, [¢r(uir)] > 1, or Ui < ¢r(uir), then

o o i-r . . .
uir[ ¢r(uir)] is neglected in the equations above.
a
0o 5 .005
Qs =T -a_- - - a, .055 -091.

o~ 81 737 3; 4
In the equation of Q? the additional quantities we have to

compute are

u21 01(u3)
u3) ¢1(u3)
“32 4’2(“32’
ug ¢ (ug,)
ug, %(ug,)
ugs % ug;)
-33-
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The following equations have exactly one positive root in qI,

The root in q¥ is u?_; the root in q* is ¢r(u?r).

1 i’ 2
* * *
. az a3 an* . .
aj + — + —3 + .0 + — -1 = (1 a, )ql ’
a3 (q%) (93)

where qE satisfies

(i* - 2)ay  (i* - 3)a} (i* - n%)ar,
(i.* - l)aI + + 2 + LI Y + n*fl =
q3 (a%) (a3)

where

n* =n-r + 1

* -
ao ao + al + cee + ar_l
* - =

aj - aJ+r—l (J - l,z,...,n*)

i* =i -r +1,
The detajils of the computation are given in tables 2 and 3.

TABLE 2

o : * s % * * * * * *
Uir i : :— 1_ ao al 82 83 84 as
uzl 2 1 5 2 .80 .08 .05 .01 .005 .005
ugl 3 1 5 3 .80 .08 .05 .01 .005 .005
ugz 3 2 4 2 .88 .05 .01 .005 .0OS
ujl 4 1 5 4 .80 .08 .05 .01 .005 .005
ugz 4 2 4 3 .88 .05 .01 .005 .005
u33 4 3 3 2 .93 .01 .005 .005
where
ao = 080, al = 008' a2 = 005' a3 = 001' a4 = 0005' as = .005
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Substituting the values from table 3 in equation A and neglecting
several terms as explained in table 3, we have

0] = -85l
Q) = Min {.722, .721}
Q; = Min {.521, .517}
Qi = .282
Qs = .091

"

.721
517

The results obtained are shown in table 4.

1 Zi
1 .851
2 «642
3 «329
4 .183
.5 -

Thus, with the observed data, this example,

P
P rau st L

M oee

i

information available about the qi's is that

9, 29,2 e 295

all we can say about the Q;

Ql 2_ 085' Q Z l72' Q

2 3

Note that

(o]
2) = Q) =t =9 -

TABLE 4
(o) i
Q; s 9
.851 .851 .851
<721 .722 <724 ]
517 .521 .616
.282 .282 524
.091 - .446
i
if all the
is that
Z 052' 04 Z .28' QS = -09 . :




This is always true.

It is interesting to compare Q? with the values of Qi obtained
under the assumption that all the qi's are equal and have the
value 9. Under this assumption,

Qi_ =q° ‘i= 1121000’5)-

2

and Qg is very close to q, - Qg and q3

In table 4, Qﬁ =q o

o
differ by approximately .l and the agreement between Q? and

q; gets progressively worse., It will usually be true that qé

and Q? are approximately equal for small values of i, but will
differ widely as i increases.
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PART IV

Ty

MINIMUM AND MAXIMUM VALUE OF THE PROBABILITY THAT A PLANE
WILL BE DOWNED BY A GIVEN NUMBER OF HITS CALCULATED UNDER

. SOME FURTHER RESTRICTIONS ON THE
PROBABILITIES ql,...,qn1

b Som

RN

In parts I, II, and III we merely assumed that q1 2 q2 2 see 2 qn

In many cases we may have some further a priori knowledge
concerning the values ql,...,qn. We shall consider

hecre the case when it is known a priori that Alqjﬁ 9541 < Aij
(3 =1,...,n-1), where Xl and AZ (xl < AZ < 1) are known

positive constants,

Wie shall also assume that

n a.
N jéi-qu:}T- <l-a . (63)
A %

TR TR A 5= 8 e W, ey

Since a, +a, t .o +a, < 1 - agr the inequality in equation
63 is certainly fulfilled if Al is sufficiently near 1. It

follows immediately from equations 63 and 26 that q, < 1.

CALCULATION OF THE MINIMUM VALUE OF Qi =1 - Pi (i < n)

Let q?,...,qﬁ be the values of Qyreserdy for which Qi becomes
a minimum. We shall prove the following.

R T SRR T <A g £

Lemma 1: The relations :

o _ o Lo -
qJ-’-l = Aij (J = 1,...,!’1 1) (64)
must hold.

- Proof: Suppose that the relation in equation 64 does not hold
for at least one value j > i and we shall derive a contradiction.

lThis part of "A Method of Estimating Plane Vulnerability
Based on Damage of Survivors" was published as SRG memo 89 and

AMP memo 76.4.
-39~
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' = o = 3 [ 1 s o= 4 -
Let i e for r l1,...,1i and qj+1 = Aij for j i,e0eon=1,
Then we have .

a.

<1 -
— qj a (65)

vy _ O (o]
qi LU ) qi - ql coe qi and oo .

n
j=1 91 °

Hence, there exists a positive value A < 1 such that

where q; = Aq3 (j = 1,...,n). But then

n (o] (o]
qy .- q; < qi eee qi qy e+ 95

in contradiction to our assumption that qg cee q? is a minimum.
Hence, Lemma 1 is proved.

Lemma 2: If j is the smallest integer such that q§+l = Azqz for

all k > j, then q: = xlqg_l for r = 2,3,...,5-1.

Proof: Assume that Lemma 2 does not hold and we shall derive a
contradiction. Let u be the smallest integer greater than one

such that qz > Alqg-l . It follows from the definition of the

integer u that if u > 2, then qﬁ_l = Alqg_z. From assumption 63

it follows that q? < 1. Hence, if we replace qz_l by

q&-l’ (1 + e)qﬁ_1 € > O), then for sufficiently small € the
inequalities Alqr < : Y < Azqr (r = 1,...,n-1) will not be
disturbed. Let v be the smallest integer greater than or equal

to u such that q3+1 < Azqg . Since by assumption j is the

smallest integer such that qz+l = Azqz for all k > j, we must

have qj < Aij-l‘ Hence, v < j-1l. It is clear that replacing
q°

° ' om :

q, bY‘qv T+ ¢ Ve shall not disturb the inequalities

Alqr i qr_'_l S Xqu (t = 1,...,1’\-1)- Hence, if
-40—




(o]

o
ql_y = (1 + € q) s q) =145+ and q! = a7

for r ¥ u, # v, then Alqi < qi+l < Azqi (k =1,e..,n=1) is ful-
filled. Furthermore, we have

n
\ v o o© o
Q) «-+ 9} =49; ... q; and _2:

Hence, there exists a positive A < 1 such that

and qq = Aq! (j = l'oo.,n)o But then

L L ] | - o o
ql LR q- < ql LI qi ql LI qi

in contradiction to the assumption that q? e q? is a minimum,
Hence, Lemma 2 is proved.

Let Eir (r = 1l,¢00,1-1) be the minimum value of Qi under the

restriction that qj+1 = Aij for j = r+l,...,n=-1 and qj+l = Alqj
for j = 1,...yr=1. From Lemma 1 and 2 it follows that the mini-
mum of Qi is equal to the smallest of the i - 1 values Eil""'E
The computation of the exact value of Eir can be carried out
in a way similar to the computation of M, described in part

II. Since these computations are involved if n is large, we shall
discuss here an approximation method.

* = : . -
Let Bir (r l,...,i~1) be the value of Qi if qj"_1 Aij for

j = r+l,...,n-1 and qj+l = Alqj for j=1,...,r. Furthermore,

5% ] {
let Lio be the value of Qi if qj+l

if n is large, the minimum of E; r=1
’
to Eit' Hence, we obtain an approximation to the minimum of Qi

= Aij (j = l,...,n-l). Then'
and E;t will be nearly equal

by taking the minimum of the i numbers E;O, E;l,...,E; f=1°
’

The quantity Eir can be computed as follows. Let 9, be the

positive root in q of the equation

-41~
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r+l a. n-r-1 a .

Y o+ 3 L2 5.0 B =1-a
j=l J(J'l) . J=l r(r+l)+rj J(J"'l) ) o
2 j 2 2 r+l+j
A\ q A A, q

(66)
(l‘ = 0,1,.0.’1-1)0
Then
r(r+l) r(i-r-1) (1—r)grth) '
E* = A 2 A g:
ir 1 2 r °

(67)

MINIMUM OF Qn

Let q?,...,qg be values of dyreee09p for which Qn becomes a

minimum. We shall prove that q9+l = qu9 (3 =1,...,n=1).

J J

Assume that there exists a value j < n such that q§+l > Aqu

]
and we shall derive a contradiction. Let u be the smallest
integer such that qg+l > quz and let v be the largest integer
o

q
(o] o o v+l
such that s N > Alqv . Let q"J = (1 + e)qu (e > 0), q\'l+l= : c’

and q5 = qg for j # u, # v+l., Then for sufficiently
small € we shall have Alq; < q;+l < Azq; (r = 1,.0.,n-1).
Furthermore, we have

o o j
ql LR ql:l =ql s qn and -; _—l_—.. < l-ao .

Hence, there exists a positive A < 1 such that q; = q
(j = 1,...,n) and

n a,

-———J—-— :l—a .
Z q" qﬂ lo)
j.l 1 eee j
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But then qI e q; < q? cee qz in contradiction to the assumption

that q? ooe qz is a minimum. Hence, our statement is proved.

If g is the root of the equation

a.
— = -

;Ea '(:-l) ' 1=-a .,
Al 2 qJ

n(n-1)
then the minimum of Q  is equal to A 2 q"

MAXIMUM OF Qi (i < n)
Let qI,...,q; be values of Qyreeerd, for which Qi becomes a

maximum. We shall prove the following:

Lemma 3: The relations

® - * 1 = 1 -
C'IJ 1 = quJ (3 lieee l) (68)
must hold.

Proof: Assume that there exists an integer j > i such that
q§+l > Alqgland we shall derive a contradiction. Let q; = q;

for r = 1,...,1i and let q5+1 = Alqi (j = i,eeeen=1). Then

n a.
= * -
9 ... q} q} ... qf and ;ga - qi >1-a, .

Hence, there exists a value A > 1 such that

fi a
= 1 - a ’
y=1 qy e q; o

where q; = Aqﬁ () = 1,...,n). But then qj ... q] > q} ... qf in
contradiction to the assumption that qi e q; is a maximum.
Hence, Lemma 3 is proved.

-43-
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Lemma 4: If for some j < i we have q?+1 > Alq;, then

J
* for k = l'.o.'j-l-

= Azqk

*
9k+1
Proof: Assume that g¥*

j+l
exists an integer k < j-1 such that qi+l < Azqﬁ . We shall

> Alqg for some j < i and that there

derive a contradiction from this assumption. Let u be the

smallest integer such that qG+l < Azq; . Furthermore, let v be

the smallest integer greater than or equal to u + 1 such that
q*
x * . . - u
9541 > Alqv . It is clear that v < j. Let q) = (¢ > o),
q& = (1 + €) q; , and q; = q; for r # u, # v. Then for suffi-
ciently small € we have

(j =lpooo'n-l) .

' " = g* * -3 -
4] ++» 9} =9} ... g} and P v > l-a .

Hence, there exists a value A > 1 such that

n a,
S gty = 1-a,
j=l ql s o0 qj (o]

where q; = 4Aq! () = i,..s,n). But then qi cve q;

contradiction to the assumption that qI cee qg is a maximum.

* n
>q] ... qf in

Let Dir (r = 1,...,i-1) be the maximum of Qi under the restric-

tion that qj+1 = Alqj for j = r+l1,...,n-1 and qj+l = Aij for

j = 1,eee,r~1., From Lemma 3 and 4 it follows that the maximum of

Qi is equal to the maximum of the i - 1 values Dil"”'Di i-1°
’

The computation of the exact value of Dir can be carried out in a

way similar to the computation of M. . in part II. Since these

computations are involved if n is large, we shall discuss here
only an approximation method.

=44~

R TRt PR B



« - . . -
Let Dir (r l,...,i=-1) be the value of Qi if qj+l Alqj for
j = r+l,...,n=-1 and qj+l = Aij for j = 1,...,r. Furthermore,
* i = 1 = -
let Dio be the value of Qi if qj+1 Alqj (3 l,¢.,n=1). Then,
if Al is not much below one, the maximum of D;r and D; =1
’
(r = 1,...,1-1) will be nearly equal to Dir' Hence, we obtain an
approximation to the maximum value of Qi by taking the largest of

3 * *
the 1 values Dio""'Di,i-l'

The value of DIr can be determined as follows. Let 9, be the
root in q of the equation

ﬁg; ai) +n?§;l : l)a’__.’.l_h? - C -
e ) (3= e r(r+ . J(3+ o*
|1 B 55t Bt B2

A q A A q

2 2 1
Then

r(;+l)+(i-r-l) (1-r-1; (i-r) ;
* =
Dir = X2 M 9y

MAXIMUM OF Qn

We shall prove that the maximum of Qn is reached when qj+l= Aij

() = 1,...,n-1). Denote by qI ves q; the values of q; ... 9,

for which Qn becomes a maximum. We shall assume that there

exists a value j < n such that q§+l < Azqg and we shall derive

a contradiction from this assumption. Let u be the smallest and

v be the largest integer such that q5+1 < Azqa and q;+l < Azq; .
*

Let q& "r;;gz € > 0), q;+1 = (1 + €) q;+l, and q; = q; for

r # u, # v+l. Then for sufficiently small € we shall have

Alq; < q;+l < Azq; (r = 1,...,n=1),

-45-
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Furthermore, we have

' R * ____J___ -
qj ... q q} ... g% and jz%. T J > 1 -ag

Hence, there exists a value A > 1 such that q; = Aq5
(j = 1,...,n) and
E——L—_l-a.
L3N BN ) J

; in contradiction to the assumption

that qI cen q; is a maximum. Hence, our statement is proved.

But then qI o q; > qI eee g

The maximum of o, is equal to

n{n-1)

2 n '/
Az q

where q is the root of the equation

NUMERICAL EXAMPLE

The same notation will be used as in the previous numerical
examples. The assumption of no sampling error, which is common
to all the previous examples, is retained. In part I it was
assumed that the q; the probability of a plane surviving the

i~th hit, knowing that the first i - 1 hits did not down the
plane, were equal for all i (@) =g, = ... =q, =4, (say)).

Under this assumption, the exact value of the probability of a
plane surviving i hits is given by

Qi =9 -

In part III it was assumed that 9 29,2 «ee 29, - Since no
lower limit is assumed in the decrease from 9 to q.

only a

i+l’

-46~
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lower bound to the Qi could be obtained. The assumption here is
that the decrease from q to 9541 lies between definite limits.
Therefore, both an upper and lower bound for the Qi can be
obtained.

We assume that

where Al < Az < 1 and such that the expression

n a.
_ -
jéa .(é_l) <1-a (A)
A
1

is satisfied.

The exact solution is tedious but close approximations to the
upper and lower bounds to the Qi for i < n can be obtained by

the following procedure. The set of hypothetical data used is

a, = «780 ag = .010
a; = .070 a, = . 005
a, = .0?0 ag = . 005
Al = .80 AZ = .90

Condition A is satisfied, since by substitution

07 + 204, .01, .005, .005 _ 50529,

8 (.8)3  (.&)® (.80

which is less than

l-ao=0220
THE LOWER LIMIT OF Qi

The first step is to solve equation 66. This involves the
solution of the following four equations for positive roots 9,0

917 92 93°

~47-




a a a a a
1 2 3 4 5 _ ~
— + — + 53 + 51 + 05 1-a, = .22 (B)
q 24 29 29 2
.07 . .04 .01 .005 .005

+ + + + = .22
a  .9q%  .729¢°  .s31441q*  .348678q°

.22q° - .07q* -~ .044444q> - .013717q% - .009408g - .014340 = 0
g, = -844.
a a a a
g 22 + 3 + = g 2 t 45 l -a ‘ (C)
rgd o APagd addg g °
d 1 1% 112 122
.07 .og . .01 - .005 - .005 -
q .89 (.64)(.9)g (.512)(.729)q (.4096)(.531441)q
5 4 3 2 _
.22q°> - .079" - .059q” - .017361@° - .013396g - .022970 = 0
g, = .904.
a a a a q
e e 5 v =3<-1-a (D)
A.q q A q AL A ©
d 1 1 122 1
.07 .03 . .013 N .005 - .005 e = .22
q .8q .512q (.32768)(.9)q (.209715)(.729)g
5 4 3 2
.22q°> - ,07q" - .05q” - .019531q° - .016954g - .032705 = 0

g, = .941.

-48-
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1 2 3 4 5  _ 4.
— ;——7 + ;3—3 +;g—z + Agh 5 = ] ao (E)
q 19 19 19 1129
«07 .04 .01 .005 .005 = .22

+ + 3 + 3 +

q  .8q® .s12q° .262144q%  (.134218)(.9)q°

2

]
o

.22q° - .07q% - .05q3 - .019531q% - .019073q ~ .041392

95 = .964 .

Next, calculate the i numbers defined by

E}_ = xi“'r’ xg“'r) a; (= 0,1,00e,i-1),
where

a(i,r) = Elfii_ll +r(i-r-1)

b(i'r) = (1 - t)(; - r - l)

go = 0844

gl = 0904

gz = 0941

gy = -964

The minimum of the E;r (r = 0ye0.,i=1) will be the lower limit of

Qi‘ The computations are given in table 5.
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TABLE 5

COMPUTATION OF LOWER LIMIT OF Qi t

. . . i -
Q; i r a(i,r) b(i,r) 9, 9, EY
Q1 1 0 0 0 .844 .844 .844 |

Q, 2 0 0 1 .844 .712 .641
2 1 1 0 .904 .817 .654 ;
; Min [E3,, E%,] = .641
Q, 3 0 0 3 .844 .601 .438
? 3 1 2 1 .904 .739 .426
; L
! 3 2 3 0 .941 .833 .427
i
Min [E%,, E%,, E},) = .426
L Q, 4 0 o 6 .844 .507 .270
4 1 3 3 .904 .668 .249
‘ 4 2 5 1 .941 .784 .231
4 3 6 0 .964 .864 .226
® = , "
Min (E},. E§,+ E},s E3,] 226
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The lower limit of Q5 can be obtained directly. The lower limit
of

10_5
. Q; = A9 .

where q is the positive root of

a

a a a a
1 2 3 4 5
f =t =S5t I3t At I0s5" 1" %%
q \a Aa Aa Ad
3
.07 . _.04 .01 .005 .005

+ + + = .22
q .8q°  .512q°  .262144q%  .1073749°

q = 0974 hd

The lower limit of
0, = (-8)1%(.970)% = Lo094 .
THE UPPER LIMIT OF Qi
The computations for the upper limit of Q1 are entirely analogous

to the computations of the lower limit. First, we solve the
equations of part IV, which for this example are the following:

a a a a a
1 2 3 4 5
-+ + + 5 = l -a
2 33 6 4 0.5 o
q \4g Ajq Ma A9
.07 + .0; + .013 + .005 - + .005 5 = .22
q .89 «5}l2q «262144q «1073749q

.22q° - .079% - .0593 - .019531q% - .019073q - .046566 = 0

* =
95 .974
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a a a a a
1 2 3 4 5
- 4+ + + + =1 - a ,
2 2. 3 3.3 4 465 o
q Aa A4 Ay \a A Mg
.07 .o; . .01 S+ .005 -+ .005 <= .22
q .9q (.81)(.8)q (.729)(.512)q (.6561)(.262144)q
5 4 3 2
.22q” - .07q - .044444q - .015432q° - .013396q - .029071 = O
g{ = .905
31 + a2 + a3 + a4 + as =1 - a
rmaZ a3g3 ASaqg? a3 g0 = o .
q 24 29 2M49 2M 9
.07 .o; . .013 . .005 _ .005 - = .22
q .9q .729q (.59049)(.8)q (.512)(.478297)q
5 4 3 2
.22q° - .07q - .044444q - .013717q° - .010584q - .020417 = O
g3 = .869
il + ag- + °3 + %4 + %s =1 - a
»al 3.3 6.4 M qd o
q 29 24 29 2M4a
.07 | .o; . .013 4 —+005 - .005 c = .22
q .9q .729q .531441q (.387420)(.8)q
5 4 3 2
.22q” - .07q - .044444q" - .013717q° - .009408q - .016132 = 0O

L
g3 .851




- wn

Next, calculate the i numbers defined by

. . *3
D;r = );(llt) A?(llr) grl (r = 0'1'...'1_1)'

where

a(i,r) = 51531—11 +r(i-r-~-1)

b(i,r) = (i = r)(@i-r -1)

2
g; = ,974
gi = -905
g4 = .869
gs = .851

The maximum of the D;r (r = 0,.0er1i=1) will be the upper limit of
Qi' The computations are given in table 6.

The upper limit of 05 can be obtained directly. The limit of

10_*5

where g* is the positive root of

2 2 a3 2 ag
—+77+11+11+1r3'1'ao
q q A4 Aa Ay g
2 2 2 2
« 07 + .0; + .013 + «005 : + . 005 = = .22
g « 99 «729q .531441q «348678qg

q’ = ,B844.

e e e
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TABLE 6
COMPUTATION OF UPPER LIMIT OF Qi ) h:
: . . * *3 -
Q, i r a(i,r) b(i,r) g q. DY_
Q1 i | 0 0 0 .974 .974 .974

Max [DIOJ = ,974

i
3
§.
:
Q, 2 0 0 1 .974 .949 .759 g
I
2 1 1 0 .905 .819 .737 g
Max [DEO' D31] = .759
2, 3 0 ) 3 .974 .924 .473 j
3 1 2 1 .905 .741 .480
3 2 3 0 .869 .656 .478
Max [D%,., D%,. D§,] = .480
Q, 4 0 0 6 .974 .890 .236 i
{
4 1 3 3 .905 .671 .250 ?
4 2 5 1 .869 .570 .269
4 3 6 0 .851 .524 .279 {
i
Max [D},, D%, D§,» D§3l = .279 ?
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.844
.641
.426
.226
.094

Summarizing
probability

A

A A A A

the results, the upper and lower limits of the
of a plane surviving i hits are given by

A A A A

The upper limit of

¢ g = (.919(.844)° = 149

.974
.759
-480
.279
149
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PART V

SUBDIVISION OF THE PLANE INTO SEVERAL
EQUI-VULNERABILITY AREAsSl

In parts I through IV we have considered the probability that a
plane will be downed by a hit without any reference to the part
of the plane that receives the hit. Undoubtedly, the probability
of downing a plane by a hit will depend considerably upon the
part that receives the hit. The purpose of this memorandum is to
extend the previous results to the more general case where the
probability of downing a plane by a hit depends on the part of
the plane sustaining the hit. To carry out this generalization
of the theory, we shall subdivide the plane into k equi-
vulnerability areas Al,...,Ak. For any set of non-negative

integers il,...,i let P(il,...,ik) be the probability that a

k

plane will be downed if the area Al receives 1, hits, the area

1
A2 receives 12 hits,..., and the area Ak receives ik'hits. Let
Q(il,...,ik) =1 - P(il,...,ik). Then Q(il,...,ik) is the prob- .

ability that the plane will not be downed if the areas Al,...,A

k
X hits, respectively. We shall assume that

Q(il""'ik) is a symmetric function of the arguments il""'ik°

receive il,...,i

To estimate the value of Q(il,...,ik) from the damage to

returning planes, we need to know the probability distribution of
hits over the k areas Al,...,Ak knowing merely the total numbuer

of hits received. In other words, for any positive integer i we
need to know the conditional probability Yi(il,...,ik) that the

areas Al,...,Ak will receive il,...,ik hits, respectively,
knowing that the total number of hits is i. Of course,
Yi(il,...,ik) is defined only for values il""’ik for which

i, + .o +1, =1 , To avoid confusion, it should be emphasized

1 k
that the probability Yi(il,...,ik) is determined under the

lphis part of "A Method of Estimating Plane Vulnerability
Based on Damage of Survivors" was published as SRG memo 96 and
AMP memo 76.5.
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assumption that dummy bullets are used. It can easily be shown
. that it is impossible to estimate both Yi(il""'ik) and

Q(il,...,ik) from the damage to returning planes only. To see

this, assume that k is equal to 2 and all hits on the returning
planes were located in the area A . This fact could be explained

in two different ways. One explanation could be that

e = -

Yi(il'iz) = 0 for i2 > 0. The other possible explanation would be that
Q(il,iz) = 0 for i2 > 0. Hence, it is impossible to estimate
both Yi(il'iz) and Q‘il'iz)' Fortunately, Yi(il,...,ik) can be

assumed to be known a priori (on the basis of the dispersion of
the guns), or can be established experimentally by firing with
dummy bullets and recording the hits scored. Thus, in what
follows we shall assume that Yi(il""'ik) is known for any set

of integers il,...,i

SRS —
r = . T 2

i WAL 2 A

P e

k*®
. Clearly, the probability that i hits will not down the plane is g
given by
. CYEED DI S TS SRR N 1-TE SO Ny (69) §
'k |

where the summation is to be taken over all non-negative integers
il,...,ik for which il + .. ik =1 .

Let 8 (il,...,ik) be the conditional probability that the areas
Al,...,Ak received il""'ik hits, respectively, knowing that the

plane received i hits and that the plane was not downed. Then we
have

Y. (i,pe00pi, )0Q(i ,000,1,)
S (i veneriy) = = 1 gi 1 ko, (70)

Of course, §.(i,,...,1i,) is defined only for non-negative
i'"1 k

integers il""'ik for which i, + c00 + ik =i .

!
{
'
:
|
i
t
'




Aot i hiilioangiiiiie

The probability Si(il,...,ik) can be determined from the distri-
bution of hits on returning planes. In fact, let a(il,....ik)

be the proportion of planes (out of the total number of planes

participating in combat) that returned with i1 hits on area Al, .
i, hits on area Ak. Then we
obviously have

hits on area A2""' and 1k

a(i,,..., i)
. C oy L 1 k
61(11,...,1k) = 3] . (71)

From equations 70 and 71, we obtain

Qia(il,...,ik)

(i = i, + ....+ lk)

Q(i '...li ) = N ]
1 k aiYi(ll""'lk) (72)

Since Qi can be estimated by methods described in parts I through

IV, estimates of Q(il,...,ik) can be obtained from equation 72.

According to equation 29, the probabilities Ql""’Qn satisfy the

equation
n a.
b 51 =1-a . (73)
=1 73j
We have assumed that q 29,2 .- 2 q,- This is equivalent to
stating that
Q. Q. it
3+1 < %+1 for j < i . (74) 1
i j !

A similar assumption can be made with respect to the prob-
abilities Q(il""'ik)' In fact, the conditional probability

that an additional hit on the area Ar will not down the plane v
knowing that the areas Al""'Ak have already sustained ;
il,...,ik hits, respectively, is given by




Q(il'...'ir-l’ ir+ll ir+llooolik)

Q(illaao'ir-l, ir, Tr+1""'ik7 L4 (75)

Obviously, we can assume that if

Jli 11, 32 i 12,...,3k 5 lk

then

Q(il'...'ir-l’ir+l'ir+l’...’ik) Q(jl’...'jr-l'jr+1’jr+l'."'jk)

Q(ll""'lr-l'lr'1r+1""'1kyﬁ < Q(Jll'OOIJr_llJrljr+1l'"IJky

(76)
for r = 1'2'..0’k.

Hence, the possible values of Ql""'Qn are restricted to those

for which equation 73 is fulfilled and for which the quantities
Q(il,...,ik) computed from equation 72 are less than or equal to

one and satisfy the inequalities of equation 76. It should be
remarked that the inequalities of equation 76 do not follow from
the inequalities of equation 74. From equation 72 and the
inequality Q(il,...,ik) < 1, it follows that

ai :Yi(llpooollk)
i - a(il,oco'ik)

Q . (77)

If the right-hand side expression in equation 77 happens to be
less than one, then equation 77 imposes a restriction on Qi'
Since
a{i, eee,ly)
Z ...Z: la. k =.z ...Z Yi(ilp.o.'ik) = 1
i 1 i i i

(the summation is taken over all values il""'ik for which
il+ ces + ik = i), we must have either
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aiYi(ll,...,lk) _ .

a(il'ooo'ik)

for all values il,...,ik for which il + .00 + ik =1i, or

aiYi(il’...’lk) ‘1

- - 1
a(1l,...,1k) < |
 ;
at least for one set of values il""'ik satisfying the condition
i il + .0 + ik = 1i . Hence, equation 77 gives an upper bound for
Qi whenever there exists a set of integers il,...,ik such that
1l+ cee + i =1 and
a(i ,oo"i )
1 k . .
a; AYp (peeeeriy) o |

It is of interest to investigate the case of independence, i.e.,
the case when the probability that an additional hit will not
down the plane does not depend on the number and distribution of
hits already received. Denote by g(i) the probability that a
single hit on the area Ai will not down the plane. Then under

the assumption of independence we have

i i i
QUijseeeriy) = a1 Y @2 2 ol @l . (78)

Hence, the only unknown probabilities are q(l),...,q(k).

Let Y(i) be the conditional probability that the area A; is hit
knowing that the plane received exactly one hit. Obviously

bl Ly

il

Yi(il,...,ik) = fll T [v(1)] eee [Y(k)] « (79)

LN ) lk

-60-

-

. X . . CT * SAkEL L e ol <l N
R < B4~ WIS P IR R PN NRREL 4 o o & .
_&,,_-._ e A A Sin B e i e e iy st Aot e




T ey e e

T

Similarly, let ¢§(i) be the conditional probability that the area
Ay is hit knowing that the plane received exactly one hit and

this hit did not down the plane. Because of the assumption of -
independence, we have

i i .

§i(iqrenriy) = prat—ar (8(D] 1 ... 18] 5 . (80)
1 k
Furthermore, we have
§(i) = ,Z‘“‘“i) . (61)
Y(i)a(i)
iz

Since the probability g that a single hit does not down the planc

Kk
is equal to z: Y(i)g(i), we obtain from equation 8l
i=1
iy - 8(1)
q(i) = Y(1) q . (82)

Because of the assumption of indecpendence, we see that 6(1i) is
equal to the ratio of the total number of hits in the arca Ai of

the returning planes to the total number of hits receiv~ by the
returning planes. That is

Z LI ) E jia(jl,...'jk)
J 3
8(i) = k.l — — . (¢3)
Z ) Z (Jl + ce. + Jk)a(Jl'..o'Jk)
Ik J1

Since Y(i) is assumed to be known and since §(i) can be computed
from equation 83, we see from equation 82 that g(i) can be
determined as soon as the value of q is known. The value of g

. can be obtained by solving the equation
n a.
3 —-g-= 1-a . (84)
=l q
-6l-
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NUMERICAL EXAMPLE

In the examples for parts I, III, and 1V we have estimated the
probability that a plane will be downed without reference to the
part of the plane that receives the hit. However, the vulner-
ability of a particular part (say the motors) may be of interest
and this example illustrates the methods of estimating part
vulnerabilities under the following assumptions:

® The number of planes participating in combat is large so
that sampling errors can be neglected.

® The probability that a hit will down the plane does not
depend on the number of previous non-destructive hits. That

is, q; =g, = ... =q =49, -
® Given that a shot has hit the plane, the probability that
it hit a particular part is assumed to be known. In this
example it is put equal to the ratio of the area of this
part to the total surface area of the plane.

® The division of the plane into several parts is repre-
sentative of all the planes of the mission. If the types of
planes are radically different so that no representative
division is possible, we may consider the different classes
of planes separately.

Consider the following example. Of 400 planes on a bombing
mission, 359 return. Of these, 240 were not hit, 68 had one hit,
29 had two hits, 12 had three hits, and 10 had four hits.
Following the example in part I we have

N = 400,
whence

A_ = 240 a_ = .600
o o
Al = 68 a, = .170
A2 = 29 a, = .072
A3 = 12 a3 = .030
A4 = 10 a4 = .025

1By area is meant here the component of the area perpendic-

ular to the direction of the enemy attack. If this direction
varies during the combat, some proper average direction may be
taken.
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As before, the probability that a single hit will not down the
plane is given by the root of

|
+
[+
w

£
o]
¢l
+
O.nwl w
+
¢l
il
ot
1
o

which reduces to

4 2

.4q% - .170q] - .072q7 - .030q_ - .025 = 0

and

qo = 0850‘

Suppose that we are interested in estimating the vulnerability of
the engines, the fuselage, and the fuel system. Assume that the
following data is representative of all the planes of the

mission:
Ratio of
area of part
to total
Part number Description Area of part area (v(i)) X
. 35
1 2 engines 35 sq. ft. 130 = . 269
‘ 45
2 Fuselage 45 sq. ft. 130 = . 346
20
3 Fuel system 20 sq. ft. 136 = .154
30
4 All other parts 30 sq. ft. 130 = .231

Total area 130 sq. ﬁt.

The ratio of the area of the i-th part to the total area is
designated Y(i). Given that the plane is hit, by the third
assumption, Y(i) is the probability that this hit occurred on
part i. Thus

-63-
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Y(1) = .269 . o

Y(2) = . 346

Y(3) = .154 !

Y(4) = .231 &
The only additional information we require is the number of hits E

on each part. Let the observed number of hits be 202, In
general, the total number of hits (on returning planes) must be
equal to

A, +2A, + 3A_, + ... + nA
i n

2 3

and in this example

A, + 2A, + 3A

1 2 + 4A, = 68 + 2(29) + 3(12) + 4(10) = 202

3 4

The hits on the returning planes were distributed as follows:

Ratio of number of hits
observed on part to

Number of hits total number of observed .
Part number observed on part hits (&8(i))
1 39 .193 {
2 78 . 386 ?
3 31 .154
4 54 .267
Total number of hits 202

The ratio of the number of hits on part i to the total number of
hits on surviving planes is designated 6(i). Then q(i), the
probability that a hit on the i-th part does not down the plane,
is given by

ati) = S q .
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whence

[
—
—
A d
-

[
o
W

al) = 317y 9% = 369
_8(2) _ .386

a(2) = 3137 9% = 7336
(3) = 33) _ .154
q Y(3) 9% © T154
5(4) .267

a(4) = 337y 9% = 331

3

(.850)

(.850)

(.850)

{.850)

.61

.95

.85

.98

The results may be summarized as follows:

Probability of
surviving a single

Probability of being
downed by a single
hit (1 - g(i))

Part hit (q(i))
Entire plane .85
Engines .61
Fuselage .95
Fuel system .85
Other parts .98

.15
.39
.05
.15

.02

Thus, for the observed data of this hypothetical example, the
engine area is the most vulnerable in the sense that a hit there
is most likely to down the plane.

low vulnerability.
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PART VI
SAMPLING ERRORS1

In parts I through V we have assumed that the total number of
planes participating in combat is so large that sampling errors

can be neglected altogether. However, 1in practice N is not
excessively large and therefore it is desirable to take sampling
errors into account. We shall deal here with the case when

9y = dgeee =9, =4 (say) and we shall derive confidencec limits tor

the unknown probability q.

If there were no sampling errors, then we would have

X; = p(l ~ a, — @) = ... - oA, S Xp T X, T oeee =X,

(1 = 2,3,400.),

where p = 1 - q. However, because of sampling errors we shall
have the equation

(1l —a_ - ... - a,; =X} T oee. — X (L6)

i-1'
where Ei is distributed like the success ratio in a sequence of
Ny =l -aj —a; - ... - @1 — ¥} = e+« = X;_,) indcpendent

trials, the probability of success in a single trial being cqual
to p.

Let Ei =1 - Bi . Then, according to equation 26 we have

n a.
_2: :7——;L—1:— =1 - ao, (67)

j=1 ) e-o qj

lphis part of "A Method of Estimating Plane Vulnerability
Based on Damage of Survivors" was published as SRG meno 103 and
AMP memo 76.6.
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provided that x; = 0 for 1 > n. In part I we have shown that

X; = 0 for i > n if there are no sampling errors. This is not

necessarily true if sampling errors are taken into account. However,
in the case of independence, i.e., when q =9 (i =1,2,00.) X
a
is very small for i > n so that 2: x; can be neglected.
i=n+1l
In fact, if the number of planes that received more than n hits
were not neqligibly small, it follows from the assumption of
independence that the probability is very high that at least some
of these planes would return., Since no plane returned with more

[ -]
than n hits, for practical purposes we may assume that 2: xi=0.
In what follows we shall make this assumption. i=n+l

Each of the quantities 51'---'5n can be considered as a sample

estimate of the unknown probability gq. However, the quantities
ql,...,qn are unknown. It is merely known that they satisfy

the relation in equation 87. Confidence limits for q may be
derived on the basis of equation 87. However, we shall use
another more dircct approach.

To derive confidence limits for the unknown probability ¢ we shall
consider the hypothetical proportion bi of planes that would have

been hit exactly i times if dummy bullets would have been used.
We shall treat the quantities bl""'bk as fixed (but unknown)

constants, This assumption does not involve any loss of
generality, since the confidence limits for g obtained on thc
basis of this assumption remain valid also when bl""'bk are

random variables. Clearly, the probability distribution of Na

(i =1,.e.,n) is the same as the distribution of the number of
successes in a sequence of Nbi independent trials, the prob-

ability of success in a single trial being ql. Hence

E(Na;) = qlh'bi (£6)

2
g (nai)

Nbiql(l -qh . (€9)
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From equations 88 and 89 we obtain

a a a
Since the variates —i, —%,...,—2 are independently distributed,
q q
and since a; is nearly normally distributed if N is not small, we

can assume with very good approximation that the sum
n a,
y (92)
i=1

q

is normally distributed. We obtain from equations 90 and 91

n ai n
E(Z —I) =2 b, =1-a, (93)

i=1 q i=1

i
bi(l -q’)
qu

For any positive a < 1 let Aq be the value for which
_t

A —-
a

2

The set of all values g for which the inequality

A
a

n b, (1 - qi) n :i

———p— £ ™ ¢ <1 ~-a ¢+ A nbi“-ql’
a i=] Ngq - iz-’l q‘ - ° o jz-:l qu (95)
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. is fulfilled forms a confidence set for the unknown probability g
with confidence coefficient a . However, formula 95 cannot be

used, since it involves the unknown quantities b,...,bn. Since
a.

i
- —% converges stochastically to bi as N+ o, we change the stan- 3
q .
ai 1
dard deviation of ) —r only by a quantity of order less than =
1 ST
",
3, &

if we replace bi by —% . 'Thus, the set of values g that satisty
Y

the ineyualities

n o oag(l-qh (96)
1-a, $1-a  +2a, i2='1 -———-———“qzl
1s an approximation to a confidence set with confidence
* coefficient ¢ .
bDenote by g the root of the equation in g
nooa, 1
Z —l = J - do . 3
1 qj :
Then q, conVerqes stochastically to g as N + »«« A considerable
simplification can bc¢ achieved in the computation of the

contidence set by substituting 9, for q in the expression of the

standard deviation of 2:—% . The error introduced by this substi=- -

9 i
tution 15 small if N is large. Making this substitution, the B
inequalities detining the confidence set are given by :

n (1 - )
1 -a_ -2 /‘ L o
e a xi-‘x qu‘

fa
-
[(Xaet]
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Hence, the confidence set is an interval. The upper end point of
the confidence interval is the root of the equation

i
n a, n a.(l - q)
Yy = =l-a -3 [¥ —u—2
. i o af . 21 (9¢)
i=1l g i=1 Nqo

3 and the lower end point of the confidence intcrval is the root ot
the equation

n ai n ai(l - q;)

—— =1 = + ————— .
Z 3 IRy 21 (99)
i=1 g i=1 Nqo

NUMERICAL EXAMPLL

In all previous examples it was assumed that Ai (the number or

rlanes returning with i hits) was compiled from such a large
number of observations that they were not subject to sampling
errors. If it is further assumed that the probability ¢ that a
hit will down a plane does not depend on the number ot previous
non-destructive hits, it is possible to obtain an exact solution
tor the probability that a hit will down a plane. Here we
introduce the possibility that the Ao,...,An are supbject to

sampling errors but retain the assumption ot independence. Under
these less restrictive assumptions we cannot obtain the cxact
solution for q, but for any positive number a < 1l we can congtruct
two functions of the data, called confidence limits, such that
the statement that g lies between the contidence limits will be
true 100a percent of the time in the long run. The contidcnce
limits are calculated for a = .95 and .99,
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returning plane,

meter,

1 1

fle]

. Given
i ] N = 500 a;
Ao = 400 ao
Al = 40 al
A2 = 25 a2
A3 = 5 a3
A4 = -3 a4
A5 = 2 a5
475

a a a
=
¥ q q
. * Vle obtain
3
? . .20g°
9, = . 850 ,

[}

Under the assumptions of part I,

Ay

T
« 80
.08
.05
.01

.006
.004

WREOMP ARSI v Nt 046 LRI Tt BF HECAPO €40 35 5w s s T I s 4 (kg AT B L TG M w18 3 TR

it was proved that no planes
. received more hits than the greatest number of hits observed on a

This is not necessarily true when the possi-
bility of sampling error is introduced, but it is retained as an
E assumption, since the error involved is small.

k If the a; are subject to sampling error, and q is the true para-

(A)

will be approximately normally distributed with mean value 1 - ao

In outlining the steps necessary to calculate the confidence
limits, the following hypothetical set of data will be used.

The first step is to find the value 9y for which expression A is
equal to its mean value, by finding the positive root of

- .08q? - .05¢3 - .01q% - .006q - .004 = O
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The next step is to calculate the standard deviation of .
expression A. This can be shown to be approximately equal to

- gt - 1
g = L ai(l qO) ;."
- K 21
i=1 Nqo ‘ﬁ
1 2 3 4 5 A
a,(1-q,) ay(l-qJ) aj(l-q)) a,(1-q)) ag(l-q)) 5
+ + + + :
Ng? Ng? 6 Ng S Ng 10 4
9% 5 Na, ) P £
= .01226 . o
n a;
Knowing that 2: 5 is approximately normally distributed with
0-1 q N
mean value 1 - a, and the standard deviation o, we can determine .

a,
the range in which Z:—% can be expected to be 100a percent of

q .
the time (say 95 and 99 percent) by determining A 95 and A 99
such that
A 2
2 J.'J5 exp |[- %— dt = .95
v 2n
X 95
A 2
1 j.gg exp (-;—- dt = .99 .
V21 4

.99
From the table or the areas of a normal curve, it is found that

1.959964
2.575829 .,

A 95
X. 99

We can now calculate the confidence limits for each value of o by
) finding the two values of q for which the equality sign of the
following expression holds:




i noay i
- Z — ~- (1 - a_) i A0 .
; i=1 qt © « ,

It follows that for cach a, the confidence limits are the
positive roots of thc¢ equation

n a; ;
> 1 =l-a tro '
1= g o E
% - o o i
: r o Aa .0122678)\u 1 a, Aao 1 45 +Aao %
E - .95 1,959964 024044 .175956 .224044 iy
x .99 2.575829 .031600 .168400 .231600 b
: 4
For a = .95 the contidence limits of 9, are the positive rocots ot R
. cguation r
&, a, a,q a, ag ﬁ
. —_ - + -3 + 3 + =< = .175956, |
C G q & (8 }

wirich reduces to

5 4 3

.1759564~ - .08y = 054~ - .Ulqz - J0uey - JUU4 = U
|
(g = 391.2'
and eyguation
‘ a a. d a a .
. 2 b i
¥ —i+—;+—§-+—%+—r=.224o44,
¢ q < q J g~
which reduces to
.224044(]b - .qu4 - .L‘Sq3 - .Ulq2 - .006g - U044 = 0O
g = .U01.
>
similarly, tor a = .99 we have
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q = .935

q= .787 .

Summarizing the
limits of q are
limits are .787

.168400q° - .08q% - .05q

.231600q> - .08q% - .05q

3

3

results we find that the 95-percent confidence
and that the 99-percent confidence

.801 and 0912'
and .935.

e e
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- .Olq2

- .01q
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PART VII
MISCELLANEOUS REMARKS!

. 1. PFPactors that may vary from combat to combat but influence the
probability of surviving a hit. The factors that influence the © ]
probability of surviving a hit may be classified into two groups. .
The first group contains those factors that do not vary from
combat to combat. This does not necessarily mean that the factor
in question has a fixed value of all combats; the factor may be a
random variable whose probability distribution does not vary from ’
combat to combat. The second group comprises those factors whose f
probability distribution cannot be assumed to be the same for all
combats. To make predictions as to the proportions of planes L
that will be downed in future combats, it is necessary to study r

the dependence of the probability g of surviving a hit on the
factors in the second group. In part V we have already taken
into account such a factor. In part V we have considered a h
subdivision of the plane into several equi-vulnerability areas

Al,...,Ak and we expressed the probability of survival as a func- i

- tion of the part of the plane that received the hit. Since the
probability of hitting a certain part of the plane depends on the
angle of attack, this probability may vary from combat to combat.

. Thus, it is desirable to study the dependence of the probability 1
of survival on the part of the plane that received the hit. In
addition to the factors represented by the different parts of the
plane, there may also be other factors, such as the type of gun
used by the enemy, etc., which belong to the second group. Therc
are no theoretical difficulties whatsoever in extending the
theory in part V to any number and type of factors. To
illustrate this, let us assume that the factors to be taken into
account arc the different parts Al,...,Ak of the plane and the

different guns 9yreeer9g used by the enemy. Let q(i,j) be the
probability of surviving a hit on part A, knowing that the bullet
has been fired by gun gj. We may order the km pairs (i,j) in a

; sequence. We shall denote q(i,j) by g(u) if the pair (i,j) is
the u-th element in the ordered sequence of pairs. The problem
of determining the unknown probabilities gq(u) (u = 1,...,km) can
be treated in exactly the same way as the problem discussed in

]
.
i
I

lyhis part of "A Method of Estimating Plane Vulnerability

Based on Damage of Survivors"™ was published as SRG memo 109 and
AMP memo 76.7.

.
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part V assuming that the plane consists of km parts. Any hit
part Ai by a bullet from gun gJ can be considered as a hit on

part Au in the problem discussed in part V where (i,j) is the
u-th clement in the ordered sequence of pairs.

2. Non-probabilistic interpretation of the results. It is
interesting to note that a purely arithmetic interpretation ot

the results of parts I through V can be given. Instead of
defining G; as the probability of surviving the i-th hit knowingy

that the previous 1 - 1 hits did not down the plane, we definc 4y
as follows: Let Mi be the number of planes that received at least
i hits and the i-th hit did not down the plane, and let “i be the

total number of planes that received at least i hits. ‘“Then

_ Mi

Hy T Thus, qy is defined in terms of what actually hap-
i

pened in the particular combat under consideration. To aistin-
guish this definition of 44 from the probabilistic definition, we

M.

shall denote thc ratio ﬁ% by ai' he quantity ¢ 1is unknown,
i

since we do not know the distribution of hits on the planes that
did not return. However, it follows from the results of part 1
that these quantities must satisfy equation 26. If we can assunic
that in the particular combat under consideration we have
qi = L. = Gn then the common value q of these quantities is the

root of the equation

a._
S R
z:ﬁj =1-a, .

Assuming that Gl > 52 > e > En , the minimum value O? of ¢,

derived in parts III and IV can be interpreted as the minimu.,
value of Qi =gy oees Gy o

The minimum and maximum values of Qi derived in part IV can also
be interpreted as minimum and maximum valucs of Qi= qpees 4 if
we assume that the inequalities Alqj < qj+1 < Aij (] = 1,¢0.,n-1)
are fulfilled. Similarly, a pure arithmetic interpretation of

the results of part V can be given,
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3. The case when Y(i) is unknown. In part V we have assumed
that the probabilities ¥(1),...,Y(k) are known. Since the
exposed areas of the different parts Al""'Ak depend on the

angle of attack, and since this angle may vary during the combat,
it may sometimes be difficult to estimate the probabilities
Y(1)y...,Y(k). Thus, it may be of interest to investigate the
guestion whether any inference as to the probabilities
q(l),...,4q9(k) can be drawn when Y(l),...,Y(k) are entirely unknown.,
We shall see that frequently a useful lower bound for q(i) can
still be obtained. In fact, the value g*(i) of gq(i), calculated
under the assumption that the parts Aj(j # 1) are not vulnerable

(g(3) = 1), is certainly a lower bound of the true value gq(i).
Considering only the hits on part A;r a lower bound of g*(i), and

therefore aiso of q(i), is given by the root of the equation

|m
LILE)

n
Z

= 1 - a; ? (100)
q

where a; (r = 0,1,...,n) is the ratio of the number of planes

returned with exactly r hits on part A; to the total number of
rlanes participating in combat.

The lower limit obtained from equation 100 will be a useful one
if it is not near zero. The root of equation 100 will be
n
considerably above zero if 2: a; is not very small as compared
r=1
with 1 - a;. ‘This can be expected to happen whenever both Y(1i)

and gq(1) are considerably above zero.
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PART VIII

VULNERABILITY OF A PLANE TO DIFFERENT TYPES OF GUNS!

In part V we discussed the case where the plane is subdivided
into several equi-vulnerability areas (parts) and we dealt with
the problem of determining the vulnerability of each of these
parts. It was pointed out in part VII that the method described
in part V can be applied to the more general problem of esti-
mating the probability q(i,j) that a plane will survive a hit on
part i caused by a bullet fired from gun j. However, this method
is based on the assumption that the value of Y(i,j) is known
where v(i,j) is the conditional probability that part i is hit by
gun j knowing that a hit has been scored. 1In practice it may be
difficult to determine the value of Y(i,j) since the proportions
in which the different guns are used by the enemy may be unknown.
On the other hand, it seems likely that frequently we shall be
able to estimate the conditional probability Y(ilj) that part i
is hit knowing that a hit has been scored by gun j. The purpose
of this memorandum is to investigate the question whether gq(i,j)
can be estimated from the data assuming that merely the quan-
tities Y(ilj) are known a priori. In what follows we shall
restrict ourselves to the case of independence, i.e., it will be
assumed that the probability of surviving a hit does not depend
on the non-destructive hits already received.

Let &8(i,j) be the conditional probability that part i is hit by
gun j knowing that a hit has been scored and the plane survived
the hit. Furthermore, let g be the probability that the plane
survives a hit (not knowing which part was hit and which gun
scored the hit). Then, similar to equation 82, we shall have

q(i,3) =%8—jg—}q . (101)

Let q(j) be the probability that the plane will survive a hit by
gun j (not knowing the part hit). Then obviously

q(3) =21: Y (il3)ali,3) . (102)

Let 6(ilj) be the conditional probability that part i is hit by
gun j knowing that a hit has been scored by gun j and the plane
survived the hit. Clearly

lthis part of "A Method of Estimating Plane Vulnerability
Based on Damage of Survivors" was published as SRG memo 126 and
AMP memo 76.8.




2v(ilida(i.g) q(3)
1

From equation 103, we obtain
oy _ 6(113) .
alisi) = ya7dy atd) - (104)

The quantity 6(ilj) can be estimated on the basis of the observed
hits on the returning planes. The best sample estimate of §&§(ilj)
is the ratio of the number of hits scored by gun j on part i of
the returning planes to the total number of hits scored by gun j
on the returning planes. Thus, on the basis of equation 104, the
probability gq(i,j) can be determined if q(j) is known.

Now we shall investigate the question whether q(3j) can be
estimated. First, we shall consider the case when it is known a
priori that a certain part of the plane, say part 1, is not

vulnerable. Then g(i,j) = 1 and we obtain from equation 104
- S(113) .
1l = Y(113) a(y) . (105)
Hence,

o Y(113)
a(j) __GTﬂ'jL) . (106)

Thus, in this case our problem is solved. If no part of the
plane can be assumed to be invulnerable, then we can still obtain
upper limits for g(j). In fact, since gq(i,j) < 1, we obtain from
equation 104 -

a3 < . (107)
Denote by p(j) the minimum of I(ils) with respect to 1. Then
we have

a(j) £ e(3) . (108)
If there is a part of the airplane that is only slightly

vulnerable (this is usually the case), then g(j) will not be much
below p(j). Let the part ij be the part of the plane least
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vulnerable to gun j. If q(ij,j) has the same value for any gun

j., then gq(j) is proportional to p(j). Thus, the error is perhaps
not serious if we assume that q(j) is proportional to p(j), i.e.,

a(j) = are(3). (109)

The proportionality factor A can be determined as follows. From
equations 101 and 104 we obtain

8(i,3) . _ .y 8(il3)
T3y @ 7 20 YTy (110)

Hence,

AY(i,j) = g séii';yéi;') . : (111)

Denote 2, 8(i,j) by s(j). Then,
i

§(ilj) = %}%ﬁ}l . (112)

From equations 111 and 112 we obtain

AY(i,3) = q 6(')J(§") . (113)

Since

¥ OY(ilj) =1,
i
we obtain from equation 113
A Y(i,j) = s(3) 114
%; %: (i,3) <a§;57%7 (114)

But

%;g;Y(i,j) =1,

-80-
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Hence,

- 8(3)
A-quwg-)— . (115)

Since §(j) and p(j) are known quantities, the proportionality
factor A can be obtained from equation 115. The probability q is
the root of the equation

n a.
Z '—J' = l - a ’
3=1 ¢’ ©

Q

where a. denotes the ratio of the number of planes returned with

exactly j hits to the total number of planes participating in
combat.

NUMERICAL EXAMPLE

In part V, the case of a plane subdivided into several equi-
vulnerability areas was discussed, and the vulnerability of each
part was estimated. The same method can be extended to solve the
more general problem of estimating the probability that a plane
will survive a hit on part i caused by a bullet fired from gun j,
if assumptions corresponding to those of part V are made. The
first three of the four assumptions that must be made to apply
the method of part V directly are identical with those made in
part V. They are:

® The number of planes participating in combat is large so
that sampling errors can be neglected.

® The probability that a hit will not down the plane does
not depend on the number of previous non-destructive
hits. That is, 9y =49, = ... =q (say), where 9 is the

conditional probability that the i-th hit will not down
the plane, knowing that the plane is hit.

® The division of the plane into several parts is
representative of all planes of the mission.

The fourth assumption necessary to apply the method of part V
directly usually cannot be fulfilled in practice. It is:

® Given that a shot has hit the plane, the probability that
it hit a particular part, and was fired from a particular
type of gun, is known.
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These probabilities depend upon the proportions in which differ-
ent guns are used by the enemy. To overcome this difficulty a
method that does not depend on these proportions is developed in
part VIII. The assumptions necessary for the method of part VIII
differ from those of part V only in that the fourth assumption is
replaced by:

e Given that a shot has hit the plane, and given that it
was fired by a particular type of gun, the probability
that it hit a particular part is known.

The information necessary to satisfy this assumption is more
readily available, and in the numerical example that follows a
simplified method is suggested for estimating these
probabilities.

The Data

The numerical example will be an analysis of a set of hypotheti-
cal data, which is based on an assumed record of damage of sur-
viving planes of a mission of 1,000 planes dispatched to attack
an enemy objective. Of the 1,000 planes dispatched, 634 (N)
actually attacked the objective. Thirty-two planes were lost
(L=32) in combat and the number of hits on returning planes was:

Ai = number of planes returning with i hits

386
120
47
22
16
11

The total number of hits on all returning planes is

A, + 2A, + 3A, + 4A, + 5A,. =

1 2 3 4 5

120 + 2x47 + 3x22 + 4x16 + 5x11 = 399 .

These 399 hits were made by three types of enemy ammunition:




Bl Flak
. B. 20-mm aircraft cannon ?
By 7.9-mm aircraft machine gun k
* and the hits by these different types of ammunition were also é

recorded by part of airplane hit:

Cl Forward fuselage ﬁ
¢, Engine ;
C3 Full system 5
C4 Remainder

"g The necessary information from the record of damage is given in

AT s BN, 27 K

TABLE 7
NUMBER OF HITS OF VARIOUS TYPES BY PARTS
Forward Fuel
fuselage, Engine, system, Remainder, ggial
' <, c, C3 Cq parts
Flak, Bl 17 25 50 202 294
20~mm 8 7 17 18 50
cannon, B
2
: 7 « 9~mm 7 13 17 18 55
: machine
i gun, B3
l - - - - - !
: Total all 32 45 84 238 399 ‘
: types i

oo

& A Method of Estimating the Probability of Hitting a Particular :
i Part Given That a Shot of a Particular Ammunition Has Hit the t

Planel |

The conditional probability that a plane will be hit on the i~th
area, knowing that the hit is of the j-th type, must be deter-
mined from other sources of information than the record of

lNecessary for fourth assumption.
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damage. Although a simplified method is used in this example,
more accurate estimates can be made if more technical data is at
hand. The first step is to make definite boundaries for the
areas Cl' C2, C3, C4. Next, assume that each type of enemy fire

Bl' Bz, B3 has an average angle of fire 61, 62, 83- Finally,

ey ey ety

F

assume that the probability of hitting a part of the plane from a
given angle is equal to the ratio of the expcsed area of that
part from the given angle to the total area exposed from that
angle.

T

In this example it is assumed that flak (Bl) has the average

angle of attack of 45 degrees in front of and below the plane,
whereas 20-mm cannon and 7.9-mm machine gun fire both hit the

s plane head-on on the average. The area C1 is so bounded that it

includes areas which, if hit, will endanger the pilot and
co-pilot. Area C2 includes the engine area and area C3 consists

Rl o>
o 297

essentially of the area covering the fuel tanks. The results of
computations, based on the above assumptions, are assumed to be

as follows, where Y(CiIBj)1 represents the probability that a hit g
is on part Ci knowing it is of type Bj (as estimated by deter-
mining the ratio of the area of Ci to the total area as viewed
{ from the angle ej associated with ammunition Bj).

(c)

Y(cllsl) = .058 7(C1|B2) = ,143 v(clla3) = .143
Y(czlal) = ,092 v(c2|32) = ,248 Y(C2|B3) = .248
v(c3|31) = .174 7(c3|52) = .303 7(c3la3) = .303
v(c4|31) = .676 7(c4|132) = .306 v(c4la3) = . 306

-2

lThis notation differs from the previous notation of part

VIII. 1In the first part of part VIII, Y(il|j) is used with the
understanding that the first subscript refers to the part hit and

the second subscript refers to the type of bullet. In the

numerical example, the relationship is made explicit by letting '
Ci stand for the i-th part (or component) and Bj for the j-th

O Ty P EYee por omstraret DRme L

type of bullet. The same device is used throughout this example.
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Computations for Method of Part VIII

Let q(Ci,Bj) be the probability of surviving a hit on part Ci by
gun Bj' By equation 104, we have

§(c.IB.)
- 1
q(ci.Bj) = ;TEITgiy q(Bj) ' (D)

where 6(Ci|Bj) is the probability of being hit on part Ci,
knowing that the hit was scored by a bullet from gun Bj and that
the plane survived: Y(ciIBj) is the probability of being hit on
part Ci, knowing that the hit was scored by a bullet of type Bj:
and q(Bj) is the probability that a plane will survive a hit of
type Bj' knowing that the plane is hit. This can be estimated by
taking the ratio of the number of hits of type Bj on part Ci to
the total number of hits of type Bj on returning planes.

Applying this method to the table we obtain

(E)

5(c1|51) = .058 6(C1l82) = .160 6(C1|B3) = .127
5(c2|31) = ,085 a(czlaz) = ,140 5(c2|33) = .236
s(calal) = .,170 a(c3|32) = , 340 6(C3|B3) = .309
s(c4|31) = .687 s(C,lB,) = .360 §(c lB,) = .327

The final quantity required to calculate q(Ci,Bj) by equation D
is q(Bj). By equation 109, we have

q(Bj) = AD(Bj) ' (F)
Y(CiIB ) _
where p(Bj) is the minimum of ;TEITgiy with respect to i.
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P(B)

Q(Bl)

p(B,)

P(B,)

The constant

Bj-

Y(C, IB.)
min { 1_J

Y(C,IB))  Y(Cy1By) Y(c4mj)}
S(C TBY "&(C,TB;7 '5(C,TB;) "3(C,TB;)

min .058 .092 .174 .676
.058 7 085 ' 170 ' .687

min ‘l s 21 r 21 ’ .984}

.984

o [45 21, 40 3u

min {.894 , >1 , .891 , .850

850

min {133, 556 0 305 0 437

min >1  >1 , .981, .936}

.936

multiplier A

§(B.)

is defined by

equation 115

E The determination of g is identical with the procedure of
@ VII. From equation 26

A
Y4 =nN-a
q? °

we substitute the values of equation A?

! 248q° - 120g

4 3

- 479g

- 2292 - 16g - 11 = 0

-86-
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where 6(Bj) is the conditional probability that a hit is of type

part
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The root is .930 (= q, say) .

] The values G(Bj) are obtained directly from table 7 by taking the
° : ratio of hits of type Bj on returning planes to the total number

of hits on returning planes.

294
399

5(B,) = 338 = .125 (J)

: . 55 _
E 6(B3) = 399 = .138

s(Bl) = ,737

Substituting the results of equations G, I, and J in equatién H,
we obtain: .

.737 . .125 _ .138
-930 758z * 7850 * T936

.93C (1.0433)

.9703

Substituting in equation F i

a(B;) = (.9703) (.984) = .955
q(B,) = (.9703) (.850) = .825 (K)
q(By) = (.9703) (.936) = .908

The probabilities q(Ci,Bj) can now be determined from equation D

by using the values given in equations C, E, and K.

s(c.IB.)
_ i j
\
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q(Cl,Bl) = (.058) (.955)/.058 . 955
q(Cz,Bl) = (.085) (.955)/.092 = .882

qa(Cy,B)) = (.170) (.955)/.174 = .933
a(CysBy) = (.687) (.955)/.676 = .971
q(C,B,) = (.160) (.825)/.143 = .923
q(C,,B,) = (.140) (.825)/.248 = .466
q(C4,B,) = (.340) (.825)/.303 = .926 (L)
q(C,,B,) = (.360) (.825)/.306 = .971

q(Cl,B3) = (.127) (.908)/.143 = .806
q(Cz,B3) = (.236) (.908)/.248 = ,864
q(C3,B3) = (.309) (.908)/.303 . 926
q(C4,B3) = (.327) (.908)/.306 .970

Comments on Results

The vulnerability of a plane to a hit of type Bj on part C; is

the probability that a plane will be destroyed if it receives a
hit of type Bj on part Ci' Let P(Ci,Bj) represent this vulner-

ability. The numerical value of P(Ci,Bj) is obtained from the
set L and the relationship

The vulnerability of a plane to a hit to type Bj on part C, is
given in table 8.

This analysis of the hypothetical data would lead to the
conclusion that the plane is most vulnerable tu a hit on the
engine area if the type of bullet is not specified, and is most
vulnerable to a hit by a 20-mm cannon shell if the part hit is
not specified. The greatest probability of being destroyed is
.534, and occurs when a plane is hit by a 20~mm cannon shell
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on the engine area. The next most vulnerable event is a hit by a
7.9-mm machine gun bullet on the cockpit. These, and other
conclusions that can be made from the table of vulnerabilities
derived by the method of analysis of part VIII, can be used as
guides for locating protective armor and can be used to make a
prediction of the estimated loss of a future mission.

TABLE 8

VULNERABILITY OF A PLANE TO A HIT OF A SPECIFIED TYPE
ON A SPECIFIED PART

Vulner-
ability to
specified
type of
hit when
Forward Fuel area is un-
fuselage Engine = sgystem Remainder specified
Flak, B1 . 045 .118 .067 .029 . 045
20-mm .077 .534 .074 .029 .175
cannon, B
2
7.9-mm .194 .136 .074 .030 .092
machine
gun, B3
Vulnerability
to hit on
specified area
when type of
hit is un-~
specified® 114 .179 .074 .038 .070° o

3These vulnerabilities are calculated using the method of
part V, and assuming that the v(ci), the probability that part i

Ci is hit, knowing that the plane is hit, are as follows:

v(ci) = ,084 v(cz) = ,128 1(c3) = ,212 7(c4) = ,576 .

Drhis is the probability that a plane will be destroyed by a
hit, when neither the part hit nor the type of bullet is
specified.
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